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We present a general review of the projective symmetry group classification of fermionic quantum spin liquids
for lattice models of spin S = 1/2. We then introduce a systematic generalization of the approach for symmetric
Z2 quantum spin liquids to the one of chiral phases (i.e., singlet states that break time reversal and lattice
reflection, but conserve their product). We apply this framework to classify and discuss possible chiral spin
liquids on triangular and kagome lattices. We give a detailed prescription on how to construct quadratic spinon
Hamiltonians and microscopic wave functions for each representation class on these lattices. Among the chiral
Z2 states, we study the subset of U(1) phases variationally in the antiferromagnetic J1-J2-Jd Heisenberg model
on the kagome lattice. We discuss static spin structure factors and symmetry constraints on the bulk spectra of
these phases.
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I. INTRODUCTION

Ideas for chiral quantum liquids in two-dimensional spin
S = 1

2 Heisenberg models go back to the early days of
frustrated magnetism [1–3], and they were motivated to a
large extent by the physics of the quantum Hall effect [4–7].
These exotic spin states respecting spin rotation and lattice
translation, but breaking time-reversal and mirror symmetries,
are expected to show very unusual physical properties such as
chiral edge modes, quantized thermal or spin Hall effects [8],
and bulk excitations with anyon statistics. While historically,
a “macroscopic” time-reversal breaking was believed to be
necessary for exotic phases to emerge (e.g., a uniform magnetic
field as in the quantum Hall effect), it was soon realized
by Haldane [9] that net magnetic flux is not a mandatory
ingredient. This line of thinking cumulated in the now
very active research on topological quantum phases [10–12].
Recently, chiral spin liquids have regained a lot of attention
[13–29], partly due to potential realization of such exotic
phases in kapellasite and related materials [30–34].

At the heart of the spin liquid construction is fractionaliza-
tion of spin in terms of spinons, i.e., effective low-energy
quasiparticles carrying a fractional spin quantum number
[35–38]. This is in contrast to magnon excitations in spin
wave theory [39] of more conventional long-range ordered
phases, which carry integer spin. At a formal level, spin can be
written in terms of spinon operators [40], as we will discuss
below. A physically interesting and highly nontrivial question
is whether—in a concrete spin model—fractionalized spinons
can emerge as quasifree (i.e., deconfined) excitations at low
energy. In the case of confinement (i.e., local binding of spinon
pairs), the bound state is nothing but a magnon excitation, and a
conventional phase is realized. Deconfined spinons are known
to emerge in one-dimensional spin chains [41–44], but the
central question remains whether this effect can carry over to
higher dimensions. Two-dimensional quantum spin models
[45–59] and materials [60–65] with geometric frustration
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are strong contenders for such exotic phases. Recently, an
interesting study found evidence for spin fractionalization in an
organic square-lattice compound at high energy [66]. Quantum
spin liquids have also been proposed in three-dimensional
hyperkagome systems [67–69].

The projective symmetry group (PSG) classification was
introduced by Wen [70] on the square lattice for so-called
symmetric liquids, i.e., spin phases that do not break any lattice
symmetry, spin rotation, nor time reversal. In essence, the
PSG classification seeks to list all possible classes of lattice
symmetry representations in the enlarged Hilbert space of
fractionalized spinons [71]. The discrete (and finite) number
of these symmetry representations is then an enumeration and
characterization of possible QSL phases. Wen’s original work
used a fractionalization in terms of fermionic spinons (also
known as “Abrikosov fermions”) [72]. An extension to the
anisotropic triangular lattice was later addressed [73], but
only recently PSG classifications of symmetric liquids were
published for honeycomb [74,75] and kagome lattices [76].

Other extensions have appeared in the literature [77].
Wang et al. [78,79] performed a classification of symmetric
spin phases in the case of bosonic fractionalization [80–82]
(so-called “Schwinger bosons”) on triangular, kagome, and
honeycomb lattices. To some extent, this problem is simpler
than the fermionic one, because the emergent gauge symmetry
is U(1) instead of SU(2). When bosonic spinons condense,
they give rise to conventional Néel phases. Otherwise, bosonic
liquids always exhibit a spin gap and Z2 gauge fluctuations.
A PSG classification of chiral spin liquids within Schwinger
boson theory has been published by two of us and Misguich
[13,83].

The principal goal of our paper is to present the general
theory of the projective symmetry group (PSG) classification
using fractionalization with fermionic spinons, in the case
when lattice symmetries and spin rotation are preserved, except
possibly some point group symmetries and time reversal. Here,
we generalize in a systematic way the notion of symmetric
spin liquids to the one of chiral spin liquids (CSLs) within the
parton construction [40]. In the latter case, we distinguish
between Kalmeyer-Laughlin CSLs that break all reflection
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symmetries of the lattice, and staggered flux CSLs that break
lattice rotation, up to time reversal. As an application of the
general formalism, we list all quantum spin liquids for the
triangular and kagome lattices. In these examples, we consider
phases potentially realized in Heisenberg models with ex-
change interactions up to third lattice neighbors. Results from
various approaches have recently suggested that novel chiral
spin states can be expected in the presence of such long range
interactions on those lattices [13–18,30,57,84–90]. We hope
that our exhaustive listing may trigger further investigations of
microscopic spin models, potentially identifying some of the
classified states as viable ground-state candidates.

This paper is meant to be largely self-contained in its core
results. Some of the presented material (especially in Sec. II)
may therefore be known to specialists, and is sometimes tacitly
assumed in publications. To our knowledge, however, the
explicit and general presentation of this paper is new, and
can therefore be useful to a wider audience. We also provide
a list of references for further reading, and we comment on
recent developments in the field. For example, symmetric
quantum spin liquids are merely special cases in our general
framework, and their classification is included here. We take
this opportunity to correct incomplete PSG classifications of
symmetric quantum spin liquids on the triangular lattice that
have recently appeared in the literature [91,92].

We also discuss some general properties of the SU(2)
gauge fluxes characterizing a spin-rotation symmetric QSL
that seem to be new. In the fully gauge invariant formalism,
these fluxes have a far richer structure than the familiar U(1)
gauge fluxes (e.g., of electromagnetism). In Sec. II E, we derive
the spin order parameter corresponding to the SU(2) gauge
flux. For three-site loops, the same result is obtained in the
U(1) formalism [2], but it differs for higher-order loops. In
Sec. III, we further discuss symmetry constraints on the gauge
flux, which turn out to depend on the projective representation
class. In contrast to the simpler U(1) case, SU(2) gauge fluxes
are not trivially additive. That is, the total flux angle through
a large lattice loop is, in general, not the sum of fluxes
through elementary plaquettes. This fact is responsible for
the absence of a “CPT Theorem” in Z2 quantum spin liquids,
i.e., reflection symmetry combined with time reversal may be
broken (even if spin rotation is respected). We also comment
on the Chern number that can be nontrivial only in the case
of Kalmeyer-Laughlin, but must vanish in staggered flux CSL
states.

This paper is organized as follows. In the next section,
we review some notation and results on the fermionic frac-
tionalization of spin S = 1/2. We introduce quadratic spinon
Hamiltonians, and their characterization by SU(2) gauge fluxes
and the invariant gauge group (IGG). In Sec. III, we present the
general theory of projective symmetry representations, and the
constraints they impose on quadratic spinon Hamiltonians and
on fluxes. In Secs. IV and V, we exemplify these theoretical re-
sults in the case of triangular and kagome lattices, respectively.
We list all possible symmetric and chiral spin liquids, and
we give concrete recipes on how to construct corresponding
quadratic Hamiltonians. We discuss some special cases that
are known in the literature. The reader primarily interested in
the list of chiral spin liquids on these lattices may directly go
to Secs. IV C or V A, respectively. Finally, in the remainder

of Sec. V, we present a microscopic quantum phase diagram
for the antiferromagnetic J1-J2-Jd Heisenberg spin model on
the kagome lattice, and we relate to known results. We discuss
static spin structure factors and symmetry constraints on the
spinon spectra for some of the found QSL phases.

II. SPIN FRACTIONALIZATION

Let us introduce the fermionic fractionalization of spin
S = 1/2 operators, and discuss the resulting emergent SU(2)
gauge structure. Related fractionalization schemes have been
discussed for higher values of spin [93–97], but systematic
classification are open problems in these cases.

The spin one-half operator Sa (a = 1,2,3; or a = x,y,z)
can be written in terms of two flavors of complex fermions,
f = (fα) = (f↑,f↓)T , as

2Sa = f †σa f , (1)

where σa are Pauli matrices [35,36]. The fermions fα are
called spinon operators. Note that Eq. (1) is only formal,
meaning that the operators on both sides follow the same SU(2)
commutation relations. However, they act in different Hilbert
spaces: spin space is C2, while the fermionic Fock space is
four-dimensional. We call

f = (f↑,f↓)T (2)

a spin doublet because of its transformation under SU(2) spin
rotation as f �→ U f .

It follows from Eq. (1) that S2 = 3
4 n(2 − n), where n =

f † f is the spinon occupation number. For spin one-half, we
therefore see that the filling must be n = 1. States with other
fillings, n = 0 or n = 2, lead to S2 = 0. Henceforth, we will
call these fermionic states unphysical, because they do not
correspond to spin states.

The requirement n = 1 is only one of three equivalent ways
to specify the physical spin space. They are

f † f − 1 = 0, (3a)

f †ε f ∗ − f T ε f = 0, (3b)

i( f †ε f ∗ + f T ε f ) = 0, (3c)

with ε = iσ2 the antisymmetric tensor. In the following, it will
be convenient to introduce a gauge doublet

ψ = (f↑,f
†
↓ )T . (4)

In analogy with Eq. (1), we define

2Ga = ψ†σaψ, (5)

and the constraints (3) are elegantly written as Ga = 0.

A. Emergent SU(2)g symmetry

The enlarged fermionic Hilbert space leads to additional
internal symmetries that are not present in spin space [35]. For
example, the U(1) phase of the spinon is clearly arbitrary, and
fα �→ eiθfα does not affect the spin operator in (1). However,
in the fermionic representation of spin S = 1/2, there is a
further particle-hole redundancy. Due to anticommutation, it
is easy to see that a transformation fσ �→ fσ cos ϕ + σf

†
σ̄ sin ϕ
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does not affect the form (1) of the spin operator. Note that this
symmetry is absent in bosonic fractionalization schemes.

Since these transformations do not commute, a particle-
hole transformation can be preceded and followed by a phase
change. This is compactly written in terms of the gauge doublet
ψ as

ψ �→ eiθσ3eiϕσ2eiψσ3ψ = gψ, (6)

and g is an SU(2) matrix. We call this a “gauge transformation”
or SU(2)g, since it is local, i.e., it can be performed indepen-
dently on each site of a lattice. Note that the constraint (Ga) in
Eq. (5) transforms as a real vector under SU(2)g, while the spin
(Sa) is gauge invariant. Conversely, it is easy to see that (Ga)
is spin-rotation invariant, while (Sa) transforms as a vector.

The additional gauge redundancy in spinon space means
that there is some freedom in how physical (spin) symmetries
act in the spinon Hilbert space. A symmetry transformation—
say x—may be accompanied by an SU(2) gauge transforma-
tion gx . However, this choice is not arbitrary, since the gauge
transformations must respect the algebraic relations among
symmetry transformations. In mathematical terms, we say that
the symmetry group is represented (projectively) in the spinon
Hilbert space. This is at the core of the PSG classification and
we will discuss it in more details later. In the following, we
introduce the representations of symmetries that act on a single
site.

B. Time reversal and spin rotation

The antiunitary time reversal transformation � inverts the
spin direction, S �→ −S. For spin- 1

2 operators, time-reversal
is implemented as � : f �→ ε f or ψ �→ εψ∗ in terms of the
gauge doublet (ε = iσ2). However, in the present context it
is convenient [70] to supplement time reversal by a (particle-
hole) gauge transformation g = εT , such that

� : ψ �→ ψ∗ (7)

or f �→ f ∗. An advantage of this choice is that time reversal
and gauge transformations (6) manifestly commute: � ◦ g =
(εT g∗ε) ◦ � = g ◦ �; (acting to the right) [98]. Note that
the choice (7) is only a convenient starting definition, and
additional gauge transformations (denoted by g�) may be
associated with time reversal. However, for chiral spin liquids,
we find that there is generally no relevant freedom in the
representation of time reversal. This point is discussed in more
detail below.

As discussed before, spin rotation is implemented in spinon
space as f �→ U f , where U is the SU(2) rotation matrix.
Recently, it was realized that spin rotation may also be imple-
mented projectively, with an associated gauge transformation
g = U that is “locked in” with the SU(2) spin rotation [99].
This interesting possibility leads to a new class of Majorana
spin liquids and may shed light on alternative fractionalization
schemes [100,101]. In the present paper, we restrict ourselves
to the case when spin rotation is represented linearly in spinon
Hilbert space (i.e., with trivial gauge transformation).

C. Quadratic spinon Hamiltonians

A main goal of the PSG construction is to investigate quan-
tum Heisenberg models H = ∑

i,j Jij Si · Sj on frustrated
lattices, where fractionalized quantum phases are expected
to arise. However, replacing the spin representation Eq. (1)
in the Heisenberg model results in quartic spinon interaction
terms, and not much is gained. Progress can be made by mean-
field decoupling the spinons through a Hubbard-Stratonovich
transformation and using a path-integral approach [36,102].
To lowest order (i.e., at a saddle point), these approximations
produce quadratic spinon theories that are then solvable. In
this paper, we do not want to put emphasis on this approach.
Instead, we directly go to the quadratic spinon theory. A
posteriori, such a theory may be justified to describe the
low-temperature phase of a particular microscopic spin model,
e.g., by using variational wave functions, as we will describe
below. Alternatively, the procedure can be viewed as a clas-
sification of possible symmetric saddle points for Heisenberg
models.

The PSG allows to classify and construct quadratic spinon
Hamiltonians H0 that respect all or some symmetries of a given
spin lattice model. Such a spinon Hamiltonian is conveniently
written in terms of the gauge doublet ψj as [103]

H0 =
∑
i,j

ψ
†
i uijψj + H.c. +

∑
j

λa
jψ

†
j σaψj . (8)

In the path-integral approach, the three real parameters
λa

j are Lagrange multipliers, enforcing the constraints (3).
In the present context, they correspond to on-site spinon
chemical potentials (λz) and complex s-wave pairing terms
(λx + iλy).

In general, the link matrices can be written as uij = u
μ

ij τμ,
with (τμ) = (i12,σa) and u

μ

ij are four complex parameters
on each link. Without loss of generality, we choose [uij ]† =
uji . Equation (8) is the most general quadratic Hamiltonian
invariant under global spin rotations around Sz. Such a rotation
acts as ψj �→ eiαψj , and this is obviously a symmetry of (8). In
fact, real parameters u

μ

ij correspond to singlet, while imaginary
u

μ

ij correspond to triplet hopping and pairing terms [104–106].
In this paper, we focus on the case when the full SU(2)

spin rotation symmetry is unbroken. To see that real u
μ

ij

conserve spin rotation, we may consider the generator around
Sy , fj �→ ε fj . Under this transformation, the gauge dou-

blet goes ψj �→ εψ∗
j , hence ψ

†
i uijψj + H.c. = u

μ

ij (ψ†
i τμψj +

ψ
†
j τ

†
μψ i) �→ ψ

†
i uijψj + H.c. is invariant. Here, we have used

the fermionic anticommutation and τ ∗
μ = ετμε. Similarly, it is

clear that imaginary u
μ

ij change sign under this spin rotation,
so they correspond to triplet terms.

Particular sets of link and on-site parameters u =
[uij ,λj ] = [uμ

ij τμ,λa
jσa] are called a mean-field ansatz (or

ansätze for plural). From now on, we restrict ourselves to
real u

μ

ij with full SU(2) spin rotation symmetry [107]. In the
widely used notation, the real parameters u

μ

ij are written as
(uμ

ij ) = (ξ 2
ij ,�

1
ij ,�

2
ij ,ξ

1
ij ), where ξij = ξ 1

ij + iξ 2
ij are complex

hopping, and �ij = �1
ij + i�2

ij singlet pairing amplitudes on
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the link (i,j ). In this language, the ansatz reads

uij =
(

ξij �ij

�∗
ij −ξ ∗

ij

)
, (9)

and we have det[uij ] = −|ξij |2 − |�ij |2.
There are two important aspects of the spinon Hamiltonian

H0 in Eq. (8). It is either viewed as a low-energy effective
theory for quantum spin phases, or it may serve as a tool
for constructing microscopic wave functions for rigorous
variational energy calculations in spin models. Either way,
physical properties of a spin phase specified by H0 are
always independent of the chosen gauge. We denote the set
of lattice gauge transformations by G = {g} with g = ⊗gj .
The SU(2)g transformations gj act independently on each site
as ψj �→ gjψj . In terms of the ansatz u, the elements of G act
as

g : u = [uij ; λj ] �→ g(u) = [g†
i uij gj ; g†

j λjgj ]. (10)

Different ansätze are therefore unitary equivalent under gauge
transformations. For example, the spectrum of H0 is gauge
invariant and therefore a characteristic of an equivalence class.
To construct microscopic spin wave functions from H0, we
proceed by taking the ground state |ψ0(u)〉 of H0 (or excited
states) and remove unphysical components by applying the
Gutzwiller projector PG = ∏

j nj [2 − nj ],

|ψ(u)〉 = PG|ψ0(u)〉. (11)

In the case of fermionic spinons, expectation values in such
wave functions can efficiently be computed numerically using
variational Monte Carlo (VMC) techniques [108,109]. This
works best for singlet wave functions, because only Slater
determinants need to be evaluated. In the case of triplet pairing
terms, more resourceful calculation of Pfaffians is generally
required [95,110–112]. In analogy with Laughlin states for
the quantum Hall effect, these wave functions can be used in
variational investigations of actual lattice spin models. Apart
from energetics, various other physically interesting properties
may be calculated from the projected wave function, such
as static or dynamic spin structure factors, excitation gaps,
modular matrices, etc. [15,66,113–120].

The invariant gauge group (IGG) is an important concept
in the phenomenology of quantum spin liquid phases when
we view H0 as a low-energy effective theory. It is defined
as the subgroup of gauge transformations G that leave
the spinon Hamiltonian H0 invariant, i.e., g(u) = u for all
g ∈ IGGu. IGGu always contains Z2 as a subgroup since
global transformations gj = ±12 leave any ansatz invariant.
However, IGGu may be bigger and contain global U(1) or even
SU(2) transformations. The IGGu characterizes the emergent
low-energy gauge fluctuations in the effective theory. For
example, ifG (sometimes called “high-energy” gauge group) is
completely broken to Z2 in the mean-field state, the emergent
gauge bosons are gapped and expected to be irrelevant at
low energy. However, in liquids with IGGu = U(1) or SU(2),
gapless gauge bosons (“photons” or “gluons”) are present and
may strongly affect the low-energy physics. Depending on the
IGGu of its ansatz, a spin liquid is said to have a Z2, U(1), or
SU(2) gauge structure [37,70]. In the first case, it is called a
“Z2 QSL state” or simply “Z2 liquid”, etc.

As mentioned previously, a spinon Hamiltonian may
respect space group symmetries or time reversal when those
transformations are accompanied by appropriate SU(2) lattice
gauge transformations in G. The symmetries of an ansatz
u along with gauge transformations, SG � G, is called the
invariant projective symmetry group, and denoted by PSGu.
The PSGu is a way to distinguish between phases (H0) that
have the same physical symmetries. In Sec. III, we will explain
the classification of those symmetry representations, without
making reference to any ansatz u (this is the algebraic PSG).
The corresponding ansätze are subsequently constructed.

D. SU(2) gauge flux

A useful way to characterize quadratic spinon Hamiltonians
H0 is by their SU(2) gauge fluxes [35,37,50,69,70,121,122].
Given an ansatz u, we associate the SU(2) flux with oriented
lattice (Wilson) loops C starting from a base site j . The SU(2)
flux is defined as the matrix product of uij over the sites of the
loop,

Pj =
∏
C

ukl = ujj2uj2j3 . . . ujqj . (12)

Lattice gauge transformations (10) cancel out on the interme-
diate sites, but the SU(2) flux depends on the gauge of the base
site as Pj �→ gjPjg

†
j . However—as we will discuss in more

details later—trace and determinant of Pj are gauge invariant
and independent of the base site.

An interesting use of the SU(2) flux is the determination
of the invariant gauge group of an ansatz. As discussed
previously, IGGu contains important information about the
low-energy degrees of freedom and gauge structure of the
theory. To determine the IGGu, we may proceed in the follow-
ing way. Let us pick a field u12 on the link (1,2). For gauge
transformations in IGGu, we have g1u12g

†
2 = u12 by definition.

This equation always has the solution g2 = u21g1u12, where
we assume u†u = 12 for simplicity. The same argument on a
third site gives g3 = u32g2u23 = u32u21g1u12u23, etc. We can
propagate the gauge transformation in IGGu to any site, gq =
uqq−1 . . . u32u21g1u12u23 . . . uq−1q . When the path is closed to
a loop, the SU(2) flux matrix appears. For consistency reason,
the gauge transformation on the first site must again be the
same, and we have the constraint g1 = P

†
1 g1P1, or

[g1,P1] = 0, (13)

for all g1 ∈ IGGu. In principle, all flux matrices P1 can be
calculated for a given ansatz. The IGGu on this site is then the
subgroup of SU(2) that commutes with the flux matrices for
all paths starting from that site [123].

A sufficient condition for all flux matrices to commute with
a given gauge transformation is of course that all matrices uij

commute with this gauge transformation. It is easy to see that
there is always such a gauge. This condition is simpler to check
than Eq. (13), and it is what we do in practice.

Next, we discuss some properties of the ansatz matrix uij =
u

μ

ij τμ. When u
μ

ij are real for an SU(2) spin rotation invariant
ansatz, it can be written as

uij = ρij σ3 exp{iϕ n · σ }, (14)
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where ρij and ϕ are real numbers, and n is a unit vector. Hence
det[uij ] = −ρ2

ij and u
†
ij uij = ρ2

ij12. Using these properties of

uij , we see that P
†
j Pj = 12 |det[Pj ]|, and Pj is (proportional

to) a unitary matrix. It can therefore be written as

Pj = ρ gj [cos θ + iσ3 sin θ ](σ3)qg†
j , (15)

with gj some gauge transformation. Here, ρ is real, and q is
the number (or parity) of sites in the loop C. It follows that
det[Pj ] = (−)qρ2, and the trace of the SU(2) flux is given by

TrPj =
{

2ρ cos θ, q even,

2ρ i sin θ, q odd.
(16)

Hence the trace is real for even-site loops, while it is imaginary
for odd loops. For a given loop, the parameter ρ (as long as
ρ �= 0) can be changed by an irrelevant scaling u �→ αu, so it
has no intrinsic physical meaning. However, the angle θ is an
important gauge-invariant characteristics of the SU(2) flux.

Let us contrast some properties of the SU(2) flux with the
more familiar case of a U(1) gauge flux. When the spinon
Hamiltonian H0 only contains hopping terms and no pairing,
we obviously have IGGu = U(1). In fact, whenever IGGu is
U(1), there is always a gauge in which the ansatz is pure
hopping. In this case, we write

∏
C ξkl ∝ exp(iφ), where ξij

are hopping amplitudes. The flux φ is invariant under local
U(1) transformations, and it may be identified with θ in
Eq. (16). However, we emphasize that only cos φ, resp. sin φ

are invariant under the full SU(2)g lattice gauge group, and
not the U(1) flux φ itself. For example, a global particle-hole
transformation changes the sign of φ for even-site loops, and
φ �→ π − φ for odd loops.

Another interesting property of the SU(2) flux angle θ in
Eq. (16) is that it is nonadditive in general. Consider two
fluxes PA

1 and P B
1 on the loops A �= B starting from the

same base site. Then, the flux on the combined loop C is
the matrix product P C

1 = P B
1 PA

1 . In general, the flux angle θ

for the combined loop is not the sum of the ones on A and
B, θC �= θA + θB. The angles are additive only in the special
case when the flux matrices commute, PA

1 P B
1 = P B

1 PA
1 . As

expected, the flux angles are additive in U(1) liquids, i.e., when
IGGu = U(1) and all Pj obviously commute. In the absence of
this additivity (i.e., in Z2 liquids), it is certainly not sufficient
to specify flux angle patterns on elementary plaquettes of the
lattice to characterize quadratic spinon Hamiltonians.

Since we are primarily interested in chiral spin liquids,
i.e., states that break time-reversal symmetry, we need to
understand how time reversal affects the SU(2) gauge fluxes.
Our familiarity with the electromagnetic U(1) flux may
mislead us to think that a nontrivial flux angle θ implies
breaking of time reversal. However, this is only correct for
odd-site loops. For the gauge choice (7), it is straightforward
to show that the ansatz changes sign under time reversal,

� : u
μ

ij �→ −u
μ

ij ,λ
a
j �→ −λa

j . (17)

From the definition (12), it then follows that the SU(2) flux
on even-site loops is time-reversal invariant, while it changes
sign for odd-site loops [124]. As a result, an ansatz breaks
time reversal if the flux angle θ is nontrivial ( �= 0,π ) on
odd-site loops. A nontrivial SU(2) flux can be threaded through

even-site loops without necessarily breaking time-reversal
symmetry. A well-known example of this rather surprising
fact is the “staggered flux” state on the square lattice [36,109],
which is believed to be relevant to the pseudogap phase of
cuprate high-temperature superconductivity. In this case, a
U(1) flux ±φ is threaded through the elementary plaquettes.
An SU(2) gauge rotation brings the staggered-flux ansatz to
a pairing state with d-wave symmetry, which is manifestly
time-reversal invariant [125–128]. A more detailed discussion
of the relation between time-reversal symmetry and physical
observables will be given in Sec. III C.

E. Flux operators

In this section, we want to explore which physical spin
operator—or order parameter—the SU(2) gauge flux corre-
sponds to. Equation (12) is the property of an ansatz u, and it
is not clear a priori what spin expectation value it stands for,
if any. A closely related question has been addressed in the
classic paper by Wen, Wilczek, and Zee [2], where the authors
considered the U(1) flux in the pure hopping formalism (see
Appendix C). However, to our knowledge, the question has
not been addressed in the general SU(2) invariant framework.
In the following, we present a formalism that includes both
hopping and pairing terms on the same footing.

The spinon hopping and pairing operator corresponding to
the ansatz matrix (9) is

ûij = 1

2

(
f †

i fj f T
i ε fj

f†j ε f ∗
i f†j f i

)
. (18)

In a mean-field decoupling of the Heisenberg term in the spinon
singlet channel, one would write Si · Sj ∼ Tr[û†

ij uij ] + H.c.
As discussed before, a gauge doublet is written as ψ =

(f↑,f
†
↓ )T . In fact, a second gauge doublet is given by ψ̃ =

εψ∗. Since εg∗ε = g for any SU(2) matrix g, ψ̃ transforms
in the same way as ψ under gauge transformations, ψ̃ �→
gψ̃ . Similarly, f̃ = ε f ∗ is a second spin doublet. It is now
convenient to introduce the spinon matrix [35,99,129]

� = (ψ,ψ̃) = ( f , f̃ )T =
(

f↑ f↓

f
†
↓ −f

†
↑

)
. (19)

By construction, � transforms by left multiplication under
gauge transformations, � �→ g�. Since the spin doublets are
rows of �, it transforms by right multiplication under spin
rotation, � �→ �UT . Furthermore, one can easily show that
(18) and (19) are related by

2ûij = �i�
†
j . (20)

In this form, the operator ûij is manifestly spin-rotation
invariant, and it transforms in the same way as the field uij

under gauge transformations, namely, Eq. (10).
We are now equipped to evaluate the SU(2) flux operator

P̂j . To obtain P̂j , we replace the field uij in (12) by the operator
ûij , Eqs. (18) or (20). We have

P̂1 =
∏
C

ûkl = 1

2q
�1�

†
2�2�

†
3 . . . �

†
q−1�q�

†
q�1. (21)
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It is useful to note that �†� = 12 + 2Saσ ∗
a . Furthermore, one

can show that ��† = 12 − 2Gaσa and �σ ∗
a �† = −2Sa12,

in the notation introduced at the beginning of Sec. II. Next,
we normal-order the flux operator with respect to the spinon
vacuum as :P̂ : = P̂ − 〈0|P̂ |0〉. Using these facts, the result is

2 :P̂1: = −Tr[S1S2 . . . Sq] 12 − Tr[S2S3 . . . Sq] Ga
1σa, (22)

where S = Saσ ∗
a and the traces are over 2 × 2 matrices. Note

that the first term on the right-hand side of Eq. (22) is gauge
invariant, while the last term depends on the gauge at the base
site due to Ga

1 which transforms as a vector. Finally, taking the
trace over spin indices yields

Tr[:P̂1:] = −Tr[S1S2 . . . Sq]. (23)

This expression is both gauge invariant and independent of
base site, consistent with Eqs. (15) and (16). Furthermore, the
trace is purely real or imaginary on even- or odd-site loops,
respectively, analogous to (16). Note that we have not used the
constraint Ga

j = 0 anywhere in this calculation.

For q = 2, we have Tr[:P̂ :] = −2S1 · S2; for
q = 3, Tr[:P̂ :] = 2iS1 · (S2 ∧ S3), for q = 4, Tr[:P̂ :] =
2[(S1 · S3)(S2 · S4) − (S1 · S2)(S3 · S4) − (S1 · S4)(S2 · S3)],
etc. The case q = 3 is the scalar chirality. It corresponds to
the imaginary part of this flux in the U(1) formalism [2]. In
general, however, the SU(2) flux is different from the U(1)
result. Note that in the U(1) formalism, the constraint has to
be imposed on every site. This is not necessary in the general
SU(2)-invariant context presented here. See Appendix C for
more details on the U(1) formalism.

F. Topological degeneracy

Similar to quantum Hall states [130], (gapped, Kalmeyer-
Laughlin) chiral spin liquids are expected to be described
by effective Chern-Simons theories in the low-energy, long-
wavelength limit [131]. Such topological field theories (and
their generalizations) imply a ground-state degeneracy that
depends on the genus of compactified space. Inspired by this
fact, “topological order” was postulated to characterize exotic
spin phases, and strongly correlated states in general, beyond
the paradigm of the conventional Landau theory of symmetry
breaking.

Within the parton construction of quantum spin liquids dis-
cussed in this paper, one can construct locally indistinguishable
degenerate states by threading additional gauge flux through
the holes of the lattice torus. In continuous gauge theories,
such a flux threading changing the vacuum sector is done by
performing “singular” or “large” gauge transformations [132].

In the present case of a lattice gauge field, the flux insertion
procedure is slightly different. To do so, we introduce a “cut”
that winds around the lattice torus and that avoids all vertices.
For a short-range ansatz uij , it is possible to consider the links
(ij ) that cross this cut, and to modify the ansatz on those links
as uij �→ guij or uji �→ ujig

†, depending on the link direction,
where g is an SU(2) matrix. It is easy to see that the SU(2)
gauge flux for lattice loops winding around the torus is changed
as Pi �→ gPi . However, the modification of u must only affect
observables Pi on Wilson loops C that wind around the torus,
while fluxes through local loops are unchanged. Our flux

insertion procedure, however, may affect local loops, and this
can even break translation symmetry: a local loop crossing the
cut twice changes as Pi = uijPjkuklPli �→ guijPjkuklg

†Pli .
Hence local observables remain unchanged only if the “large”
gauge transformation g can be pulled through any local Wilson
matrix Pik that starts and ends at the cut. Clearly, this is only
the case for g ∈ IGGu.

We therefore see that aZ2 QSL state only allows topological
flux insertion with g = −1, or θC �→ θC + π . Such a “π -flux”
insertion can be done through any hole of the compactified
lattice torus, and it corresponds to a change in spinon boundary
condition from periodic to antiperiodic. This construction
inserting sign flips on a cut is similar to other instances of toy
models for topological order, such as quantum dimer models
[133–137] or the toric code [5].

On a torus, the number of topologically degenerate parton
wave functions for Z2 quantum spin liquids is therefore four,
{|φ1,φ2〉}, with φn = 0,π . On a general compact space of
genus g > 0, this number is 2g+1. However, the simplest
Abelian Chern-Simons theory potentially describing a CSL
has a topological degeneracy of 2g on a genus g surface [131].
Therefore it can occur that the four degenerate parton states
of a Z2 CSL on the 2-torus are not linearly independent, and
they span only a two-dimensional space [15,120].

III. THEORY OF PSG CLASSIFICATION

A primary goal of the PSG approach is the construction and
classification of quadratic spinon Hamiltonians H0 that respect
all or some symmetries of a given lattice spin model. However,
even beyond quadratic spinon Hamiltonians, the PSG allows
to distinguish phases that have the same symmetries. It
therefore provides a classification scheme that goes beyond
the conventional Landau theory of symmetry breaking. In this
section, we perform a rather formal and general discussion
of the PSG construction. This may help to elucidate some
core concepts of the approach. In subsequent sections, we
perform this program in the concrete examples of triangular
and kagome lattices.

A. Algebraic PSG

Before imposing symmetry constraints (such as translation,
etc) on the spinon Hamiltonian H0 in Eq. (8), the group
of symmetry transformations SG must be represented in the
spinon Hilbert space via a gauge transformation g ∈ G. Let
us introduce the group G � SG. We define the action of an
element Qx = (g,x) ∈ G � SG on an ansatz u = [uij ,λj ] as

Qx(u) = [giux−1(i,j )g
†
j ; gjλx−1(j )g

†
j ]. (24)

The multiplication law in this group is therefore

QxQy = (gx,x)(gy,y) = (gxxgyx
−1,xy), (25)

where we use the notation xgx−1 = x(⊗gj )x−1 = ⊗gx−1(j ) ∈
G. The inverse of an element is given by

Q−1
x = (g,x)−1 = (x−1g−1x,x−1). (26)

Q: SG → G � SG is required to be a representation of the
symmetry group in the gauge group G. Let e ∈ SG be the
identity element. Two representations Q and Q̃ are equivalent
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if and only if there exists a gauge transformation G = (g,e)
such that Q̃ = G−1QG; (i.e., the same gauge transformation
is applied to all elements of Q). This equivalence relation
is natural in view of our discussion of quadratic spinon
Hamiltonians in Sec. II C. In Sec. III C, we will introduce the
systematic construction of such Hamiltonians, and it will be
clear that this equivalence between representations translates
into gauge equivalence of ansätze. With this in mind, we may
call a particular representative of a class of representations a
“gauge choice.”

Furthermore, Q is a projective representation of the
symmetry group, i.e., the algebraic relations in SG must be
respected up to certain gauge transformations. We have

QxQy = ω(x,y)Qxy, (27)

where ω = (ω,e) are elements of some subgroup of G, called
the invariant gauge group (IGG) or factor set [138]. In this
paper, we restrict our discussion to global Z2 transformations,
i.e., ω ∈ IGG = {±1}. In this case, we call the representations
Z2 PSG classes. We will see that the IGG introduced here is
related to the invariant gauge group IGGu of the ansatz we are
going to construct. However, the factor set IGG is generally a
subgroup of IGGu of the resulting ansatz u, and IGGu can be
larger.

The elements ω of the factor set in (27) transform to g†ωg

under gauge transformations. Since we focus on ω ∈ IGG
= Z2, the signs ω are gauge invariant and, therefore, provide a
characterization of PSG classes. However, as we will see, these
signs are not always sufficient to distinguish Z2 PSG classes.
The set of equivalence classes of projective representations of
SG in G is called algebraic PSG.

B. Symmetry group

In principle, the algebraic PSG can be worked out for the
full symmetry group of a system. However, it is not necessary
to solve this problem in generality. In fact, we only need
representations of the subgroup of symmetries that we want
to be respected in the phase. For symmetric quantum spin
liquids [70], the full space group as well as time reversal and
spin rotation is required to be respected. To generalize this
notion, we define the chiral spin liquid as a state that respects
spin rotation, but the lattice space group is respected only up
to time reversal �. For two-dimensional Bravais lattices, the
space group generators are translations Tx̂ and Tŷ , a reflection
symmetry σ , and the lattice rotation R (e.g., π/3 rotation for
the triangular lattice, etc). We are therefore interested in the
group generated by

SG = {Tx̂ �τt ,Tŷ �τt ,σ �τσ ,R �τR }. (28)

The signatures τt ,τσ ,τR ∈ {0,1} specify different ways in
which time reversal can be broken in the chiral spin liquid. For
triangular based lattices at the focus of this paper, only τt = 0
is possible [13]. Henceforth, we will set τt = 0. Liquids that
break all reflection symmetries of the lattice are labeled by
τ = (τσ ,τR) = (1,0); such liquids may be called of Kalmeyer-
Laughlin type [1]. Chiral liquids can also break lattice rotation
R, in which case τR = 1. As we will see, this implies that the
SU(2) flux changes sign under rotation. We call them staggered
flux states [139].

In the case all τx = 0, the full lattice space group is
respected. To have a fully symmetric liquid, however, time
reversal � has to be added to SG. As we will discuss later, its
representation can sometimes be relevant in the construction
of symmetric Z2 spin liquids.

In analogy with quantum liquids that respect the space
group up to time reversal as in Eq. (28), Néel states of classical
spins can have similar symmetry properties (supplemented
by rotations of spin). For time reversal to be broken, the
arrangement of classical spins Sj must be nonplanar such that
S1 · (S2 ∧ S3) �= 0 on some triangles. Classical spin states that
respect the space group up to time reversal and spin rotation
are called “regular magnetic orders.” They have been classified
and discussed in Ref. [85] for several two-dimensional lattices.
Examples are cuboc-1, cuboc-2, and octahedral states on
kagome, or tetrahedral states on triangular or honeycomb
lattices [140–142].

For the PSG construction of chiral spin liquids, a simpli-
fication in Eq. (28) stems from the fact that we do not need
to know how time reversal � is represented in spinon space.
For example, if τσ = 1, only the representation of σ� will be
relevant. Since � commutes with all space group symmetries,
its presence does not affect the representation classes. So the
algebraic PSG of lattice symmetries are the same for chiral
and for time-reversal conserving (symmetric) spin liquids. To
alleviate our notations, we will often write σ instead of σ�τσ ,
and R instead of R�τR in the following.

In fact, the algebraic PSG can also be used to construct
spin liquids with broken spin rotation (“triplet” or “nematic”
QSLs) [104–106]. However, in this paper we focus on the
spin-rotation invariant case.

C. Invariant ansatz

Once all projective representations Q of SG (or equivalence
classes thereof) are listed, it remains to find ansätze u that
respect those symmetries for each PSG representation. For a
space group symmetry x to be respected (up to time reversal),
the ansatz u must satisfy

Qx(u) = (−)τx u, (29)

where τx = 1 if x includes time reversal, and τx = 0 otherwise
[see Eq. (17)]. The action of Qx on the ansatz was defined in
(24). On the one hand, for elements of the point group, Eq. (29)
imposes constraints on sites and links that are left invariant by
the action of x. On the other hand, this equation can be used
to propagate fields on a given site or link to another location
on the lattice.

For example, the on-site field λ satisfies

λj = (−)τx gxjλx−1(j )[gxj ]†. (30)

Here, the action of the space group element x goes along with
rotations of the vector (λa) by the representation gx . If the
site is left invariant and x(j ) = j , then this is a constraint on
λj . Otherwise, the equation can be used to propagate λ from
one site to another. In general, on a two-dimensional Bravais
lattice, there are at most two independent elements of the point
group that leave a site invariant. Therefore there can be no more
than two constraint equations.
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Pairs of sites (links) may be left invariant, or they may be
exchanged by a nontrivial element of the point group. In the
first case, the constraint on that link is

uij = (−)τx gxiuij [gxj ]†. (31)

In the latter case, the link direction is inverted and the ansatz
must satisfy

[uij ]† = (−)τx gxiuij [gxj ]†. (32)

The constraints and their number (0, 1, or 2) must be
determined on a case-by-case basis for each type of link (first-,
second-neighbor, etc). Note that the constraints (30) and (31)
must also be imposed for the trivial transformation x = e,
and for all elements ge ∈ IGG. This ensures that IGGu of the
constructed ansatz contains IGG as a subgroup. However, in
our case of IGG = Z2, this does not restrict the ansatz in any
way.

The sites and links of a given type (e.g., first-neighbor
links, etc) in a unit cell are usually mapped to one another by
elements of the point group. In this case, it is sufficient to pick
λj on one site, and the fields uij on one link of each type. All
fields in the unit cell are then obtained by propagation using
the point group representation. The ansatz on sites and links
of one unit cell can subsequently be propagated to the entire
lattice by translation.

Finally, it is clear that an ansatz u constructed for a PSG
representation Q using Eq. (29) is gauge equivalent to an
ansatz ũ constructed from another representative Q̃ in the
same PSG class. When the representative of the PSG class
is changed from Q to (g,e) · Q · (g†,e), then the constructed
ansatz is ũ = g(u). Note that the symmetry constraints usually
fix some phases in uij [direction of n in Eq. (14)], but there
remain free parameters in the ansatz.

1. Properties of SU(2) gauge flux

So far, we have discussed how symmetry affects the ansatz
u. This point of view is very useful for constructing concrete
quadratic spinon theories on the basis of a given algebraic PSG
representation. However, the ansatz is gauge dependent, and it
is not a physical observable. A gauge invariant characterization
of the theory is provided by the SU(2) flux introduced in
Sec. II D. Next, we discuss properties and restrictions imposed
by symmetries and their PSG representation on the SU(2)
gauge flux.

In Sec. IV, we will see that Z2 PSG representations of
the translation generators for a Bravais lattices can always
be chosen as gx = ±12. This gauge is very convenient and
interesting, as it implies that the SU(2) fluxes Pj are uniform on
the lattice: by virtue of Eqs. (24) and (29), we have Qx(Pj ) =
Px−1(j ) = Pj . As discussed in Sec. II D, the gauge flux through
even- and odd-site loops can be written as

Peven = eiθ(n·σ ) = cos θ + i(n · σ ) sin θ, (33a)

Podd = −i∂θ e
iθ(n·σ ) = (n · σ ) cos θ + i sin θ. (33b)

Here, we neglect an unimportant scale ρ �= 0. σ = (σa)
are Pauli matrices, and n is a real unit vector (flux director).
Hence the SU(2) flux P (θ,n) is parameterized by an angle
θ and a director n, and, as discussed, Tr[Peven] = 2 cos θ ,

resp. Tr[Podd] = 2i sin θ are gauge invariant. n rotates like
a vector under gauge transformations on the base site of the
loop. However, relative orientations of directors for different
loops starting from the same site provide gauge invariant
information, e.g., on the invariant gauge group (IGGu).

A constraint on the SU(2) flux comes from reflection
symmetries σ that map the loop C to itself, leaving at least
one site invariant. Next, we discuss the restriction on the
flux resulting from such symmetries. Again, we anticipate
that the property σ 2 = 1 of any reflection symmetry implies
that its representation gσ = 12 or gσ = iσa (up to a gauge
and unimportant signs). In addition, reflection inverts the
loop direction, and we have σ : P (θ ) �→ gσ [P (θ )]†[gσ ]† =
gσP (−θ )[gσ ]†.

Let us first discuss the case of even-site loops. Since
even-site loops are insensitive to time-reversal signatures [see
discussion around Eq. (17)], τσ does not enter the constraint
in this case. Reflection symmetry therefore imposes

gσ [Peven]†[gσ ]† = Peven. (34)

We see that for a trivial (linear) representation gσ = 12, the
flux through even-site loops is trivial, and θ = 0 or π . Only
for nontrivial representations gσ = iσa can the angle θ be
arbitrary. In this case, the flux director n must be in the plane
perpendicular to gσ , i.e., na = 0.

For odd-site loops, the time-reversal signature does enter
the constraint, and we have

gσ [Podd]†[gσ ]† = (−)τσ Podd. (35)

In fact, regardless of the representation gσ , one can immedi-
ately conclude that the flux angle θ = 0 on odd-site loops when
τσ = 0, since TrPodd(−θ ) = −TrPodd(θ ). Hence Podd = n · σ ,
with n arbitrary if gσ = 12, otherwise n ‖ gσ . For τσ = 1, a
trivial reflection representation gσ = 12 fixes the SU(2) flux
angle to θ = ±π/2. Only gσ = iσa allows an arbitrary θ , and
the flux director n must be perpendicular to gσ in this case.

The meaning of the restrictions on the flux angle for odd-site
loops (e.g., θ = 0 if τσ = 0, or θ = ±π/2 for τσ = 1 and
gσ = 12) are clear. However, restrictions on the directors n are
more subtle, since n is not observable on a single loop. These
restrictions only manifest as addition rules for flux angles θ

on different loops. Let us discuss the case τσ = 0. Here, the
restriction n ‖ gσ on odd loops, and n ⊥ gσ on even-site loops
means that we can join any even number of odd-site loops
to an even-site loop, without changing the total flux angle θ .
In particular, joining two reflection-symmetric odd-site loops
must result in an even-site loop with θ = 0.

Let us summarize this section. A trivial (linear) PSG
representation of a reflection symmetry strongly restricts the
possible SU(2) fluxes through lattice loops that have this
symmetry. For even-site loops, the flux angle θ is fixed to 0 or
π ; for odd-site loops, it is fixed to ±π/2. Only a nontrivial
representation gσ = iσa allows general SU(2) flux angles,
while the flux director n is restricted (see Table I).

2. Time-reversal constraint

In this paper, we are primarily interested in chiral spin
liquids with broken time reversal. Nevertheless, let us briefly
discuss the additional constraints that are imposed on time-
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TABLE I. SU(2) gauge flux P through even- and odd-site loops
as given in Eq. (33), restricted by time reversal �, reflection σ , and
their combination σ�.

loop � σ σ�

even n ‖ g� n ⊥ gσ n ⊥ gσ�

odd θ = 0,n ⊥ g� θ = 0,n ‖ gσ n ⊥ gσ�

reversal symmetric liquids [70]. For the construction of
symmetric liquids, we add time reversal � to the symmetry
group SG in (28). Its representation must satisfy (g�)2 = −12

[143], which implies that g� = iσa (up to a gauge). Here we
always assume a uniform gauge where g� is independent of
lattice site. Next, one imposes time reversal on the ansatz via
Eq. (29),

Q�(u) = −u, (36)

where Q�(u) = g�u[g�]†. In the usual expansion u = uμτμ

with (τμ) = (i12,σa), it is clear that time reversal forces the
temporal component u0 to vanish, independent of its (uniform)
representation g� (note that u0 corresponds to imaginary
singlet hopping). In addition to that, Eq. (36) forces one spatial
component ua = 0, corresponding to the choice of g�.

Conversely, a nonzero temporal component u0 breaks time
reversal, independent of its (uniform) representation [144].
However, u0 = 0 is only a necessary, but not sufficient
condition for time-reversal symmetry. The spatial components
(ua) of the ansatz are conveniently understood as real vectors
on the links of the lattice. An ansatz respects time reversal
if, in addition to u0 = 0, the components (ua) on all links
are coplanar. If they are nonplanar, time reversal is generally
broken.

Similar to the space group constraints discussed previously,
the restriction on the ansatz u due to time reversal is a
convenient practical device, but it does not provide any
physical or gauge-invariant insight. To this end, it is more
useful to consider the time-reversal constraints on the SU(2)
gauge flux. Again, we need to separately consider even- and
odd-site loops. In a time-reversal symmetric QSL, the gauge
fluxes satisfy

g�Peven[g�]† = Peven, (37a)

g�Podd[g�]† = −Podd. (37b)

As discussed, the representation g� must be nontrivial, g� �=
12, in a parton theory. Again, we use expressions (33) to solve
these constraints. For even-site loops, the flux angles θ are
unconstrained, provided that all flux directors n are collinear
and parallel to g� = iσa . For odd-site loops, on the other hand,
time reversal imposes θ = 0, i.e., Podd = n · σ , with directors
n perpendicular to g�, i.e., na = 0.

Thus we see that the gauge-invariant content of time-
reversal symmetry is a flux θ = 0 and n ⊥ g� on odd-site
loops. On even-site loops, the flux angle θ is unrestricted by
time reversal, but all directors n must be parallel. Physically,
this means that the SU(2) flux angles are additive on even-site
loops in time-reversal symmetric liquids. As a corollary, we
can conclude that a time-reversal invariant QSL with only

even-site loops is always a U(1) state [i.e., IGGu=U(1)]: as
discussed in Sec. II D, collinearity of SU(2) flux directors is a
sufficient condition for a U(1) state. However, if there are also
odd-site loops, the symmetric state generally has a Z2 gauge
structure. An example for the latter scenario is the “sublattice
pairing state” (SPS) on the honeycomb lattice [74,145].

3. PT theorem

Having discussed time-reversal and reflection symmetries
in (singlet) quantum spin liquids, a natural question arises
about the status of their mutual relationships. Do these
symmetries imply each other, i.e., is there a “(C)PT theorem”?
For example, the full lattice space group is respected when
all τx = 0 in SG, Eq. (28). Does this imply time-reversal
invariance and that we automatically have a symmetric spin
liquid? The combination CPT is necessarily conserved in
relativistic quantum field theories [146], but this need not be
the case in our nonrelativistic framework.

In Table I, we summarize the restrictions imposed by time
reversal �, reflection symmetry σ , and their combination σ�

on the SU(2) gauge flux. Here, we only consider the nontrivial
cases when gσ �= 12; otherwise, the flux angle is completely
fixed, see previous sections. The constraint from σ� is listed
for completeness. As discussed, this symmetry does not restrict
the flux angle θ for any loop parity. However, the directors n
are forced to be coplanar for all reflection-symmetric loops if
gσ� is nontrivial.

Next, we focus on columns � and σ in Table I. A PT
theorem would require the equivalence of symmetries � ⇔ σ

for the SU(2) flux on all loops of the lattice. We can always
choose g� and gσ to be orthogonal, i.e., Tr[g�gσ ] = 0.
However, even with this gauge, we see that a PT theorem
does not hold in general. For even-site loops, time-reversal
does imply reflection symmetry, but not so for odd-site loops:
time-reversal symmetric fluxes generally violate the additivity
property required by reflection symmetry. The situation is
exactly reversed for the inverse relation. Reflection on odd-site
loops implies time-reversal invariance for these loops, but not
so on even-site loops: reflection-symmetric fluxes on even-site
loops do not generally commute, and flux angles are not
additive, as required by time reversal.

For U(1) liquids, the situation is much simpler than in the
general case of Z2 gauge structure discussed above. In the
U(1) case, all flux directors n are collinear, and the angles θ

are therefore additive. As a result, additivity properties that
may lead to violation of the PT theorem in Z2 states are
automatically avoided. Therefore the PT theorem generally
holds in U(1) quantum spin liquids.

4. Chern number

Finally, we discuss some simple general properties of the
Chern number of chiral spin liquid states constructed in this
paper. We consider the (first) Chern number of occupied spinon
bands at half-filling for an infinite lattice, assuming that there
is a gap in the spinon spectrum. A nontrivial Chern number
for an ansatz u implies chiral edge modes in the quadratic
theory. These topological properties are likely to be robust
with respect to interactions and Gutzwiller projection.
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It is well known that the Chern number C changes sign
under time reversal, �(C) = −C. Furthermore, one can easily
check that it also changes sign under lattice reflections, σ (C) =
−C. Therefore an ansatz with nontrivial Chern number
has to break both time-reversal and all lattice reflection
symmetries. However, the combination �σ must be respected.
Furthermore, one can check that the Chern number is invariant
under lattice rotation, R(C) = C.

In terms of the time-reversal signatures τ that we introduced
in the symmetry group (28), these considerations mean that the
Chern number can be nontrivial only when τσ = 1 and τR = 0.
In other words, the Chern number is zero in the symmetric spin
liquids and in the staggered-flux CSL states. It can only be
nonzero in the case of Kalmeyer-Laughlin chiral spin liquids,
(τσ ,τR) = (1,0).

IV. TRIANGULAR PSG

The discussions in the previous sections were quite general.
As a concrete example, we now explicitly do the PSG
classification for the triangular lattice. In the next section,
we will consider the kagome lattice, which is similar to the
triangular case in many respects.

The first step consists in finding the gauge representations of
the lattice symmetry group (algebraic PSG). Following that,
the ansatz compatible with those symmetry representations
will be constructed (invariant PSG). More technical details on
these calculations can be found in Appendix A.

A. Translation group

We are interested in Bravais lattices where the translation
group is generated by Tx̂ and Tŷ . These generators commute,

Tx̂Tŷ = TŷTx̂, (38)

and their order is infinite on the infinite lattices under
consideration [i.e., (Ta)n �= e,∀n ; a = x̂,ŷ]. Equation (38)
constrains the possible representations Qa . Using Eq. (27),
we have

Qx̂Qŷ = (ε2)QŷQx̂ (39)

with ε2 = ω(x̂,ŷ)ω(ŷ,x̂)−1 ∈ IGG.
First, we can choose a gauge where gx̂ and gŷ are

particularly simple. Upon changing the gauge, we have

Q(g)
a = (g†gaTagT −1

a ,Ta). (40)

Hence, g
(g)
x̂ = g†gx̂Tx̂gT −1

x̂ , or g
(g)
x̂ (x,y) = g†(x,y)

gx̂(x,y)g(x − 1,y), and we can always use g(x − 1,y) =
[gx̂(x,y)]†g(x,y) to set g

(g)
x̂ (x − 1,y) = 12. Starting this from

x → +∞, we find gx̂(x,y) = 12 without loss of generality.
Note that it is not possible to also diagonalize gŷ in this way,
because it would affect gx̂ [147].

For gx̂ = 12, Eq. (39) becomes Tx̂gŷT
−1
x̂ = (ε2)gŷ , or

gŷ(x − 1,y) = (ε2)gŷ(x,y). Therefore gŷ(x,y) = (ε2)xg0ŷ(y).
A gauge transformation g(x,y) = g

†
0ŷ(y + 1)g†

0ŷ(y + 2) . . .

makes gŷ(x,y) = (ε2)x and leaves gx̂ invariant. Hence,

gx̂(x,y) = 12, (41a)

gŷ(x,y) = (ε2)x 12, (41b)

FIG. 1. Symmetry generators and ansatz parameters u for the
triangular lattice.

with ε2 ∈ IGG, are the most general projective representations
of the translation group of a Bravais lattice.

Note that the choices leading to Eq. (41) do not completely
fix the gauge. We are still free to do global gauge transforma-
tions (i.e., constant or sublattice-dependent transformations).
However, depending on ε2, there may be even more unfixed
space-dependent gauge transformations. A transformation g

that leaves gx̂ invariant satisfies g(x,y) = Ig(x − 1,y), or one
that conserves gŷ is g(x,y) = Ig(x,y − 1), with I ∈ IGG.
Since IGG always contains −1, staggered transformations
g(x,y) = (−)x12 and g(x,y) = (−)y12 are still possible [78].

B. Point group

Next, we discuss the PSG representations of the triangular-
lattice point group. Our definition of the generators σ (reflec-
tion) and R (lattice rotation), as well as translation Tx̂ and Tŷ are
given in Fig. 1. In addition to Eq. (38), the following algebraic
relations among the generators define the space group of a
triangular Bravais lattice [13,85]:

σTx̂ = Tŷσ, (42a)

Tx̂RTŷ = R, (42b)

TŷR = RTŷTx̂, (42c)

and

σ 2 = e, (43a)

(Rσ )2 = e, (43b)

R6 = e, (43c)

where e is the identity transformation. Similar to the discussion
and calculations in the last section, we need to find the Z2

gauge representation of the point group generators that are
consistent with Eqs. (42) and (43). In Appendix A 1, we show
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TABLE II. PSG representations of the point group for the
triangular lattice. a = exp(iσ3π/3) and b = exp(iσ3π/6). The signs
ε(·) specify the Z2 representation of Eq. (43). gσ (x,y) and gR(x,y)
further depend on the sign ε2 as given in Eq. (44). The column
“sym” indicates the global gauge freedom that remains unfixed in the
algebraic PSG.

No. gσ gR εσ εRσ εR sym

1 12 12 + + + SU(2)
2 iσ3 12 − − + U(1)
3 12 iσ3 + − − U(1)
4 iσ3 iσ3 − + − U(1)
5 iσ2 iσ3 − − − Z2

6 iσ2 a − − + Z2

7 iσ2 b − − − Z2

that they can be brought to the form

gσ (x,y) = (ε2)xy gσ , (44a)

gR(x,y) = (ε2)xy+y(y+1)/2gR, (44b)

where gσ and gR are translation-invariant SU(2) matrices.
As we discuss in more detail in Appendix, the point group

relations (43) translate into the following constraints on the
constant matrices in Eq. (44): [Qσ ]2 = ((εσ )12,e), [QRσ ]2 =
(εRσ ), and [QR]6 = (εR). The solutions to these equations are
given in Table II. The signs εσ ,εRσ ,εR are gauge invariant, so
they obviously distinguish equivalence classes of projective
representations of the point group. Note that they are identical
for PSG Nos. 2 and 6, and for PSG Nos. 5 and 7, respectively.
One can check that these PSGs are not gauge equivalent on
the triangular lattice [148]. The signs ε(·) are therefore not
sufficient to distinguish PSG classes, and, in turn, Z2 quantum
spin liquid phases.

In Table II, we choose particular gauges (or class repre-
sentatives) for the point group representations. The column
“sym” displays the remaining global gauge freedom after this
gauge fixing. This freedom will be useful, as it can help to
simplify the corresponding ansatz (invariant PSG) that will be
constructed in the next section.

In the chosen gauge, the representation gR in Table II
determines how the complex phase of spinon pairing changes
under a π/3 lattice rotation [up to signs due to ε2 and τR;
see Eqs. (44b) and (29)]. Therefore, we anticipate that PSG
Nos. 1 and 2 give rise to s-wave pairing. Similarly, Nos. 3–5
potentially lead to f -wave, No. 6 to d + id-wave, and No.
7 to p + ip-wave parings. However, the paring amplitudes
may vanish by symmetry in the ansatz (see next section). It is
interesting to note that the highest possible angular momentum
of spinon pairing for a QSL state on the triangular lattice is
f -wave.

PSG representations on the triangular lattice were also
discussed in two recent preprints [91,92]. However, the
classification in these papers is incomplete, as they missed
the triangular PSG classes 6 and 7 in Table II. This leads
to the missing of higher angular momentum spinon pairing,
e.g., of type d + id, as found in the time-reversal symmetric
quadratic-band-touching (QBT) state discussed in Ref. [57].

TABLE III. Quantum spin liquids on the triangular lattice
respecting rotation symmetry (τR = 0). All lattice symmetries are
respected for τσ = 0; states Nos. 1a to 6 also respect time reversal, so
they are symmetric QSLs [70]. The reflection symmetries are broken
in the Kalmeyer-Laughlin CSLs Nos. 7 to 10d (τσ = 1). Column
“PSG” refers to the point group representations in Table II. λ is
the on-site field, and ua is the ansatz on links shown in Fig. 1,
in the notation of allowed real components (τμ) = (i12,σa); “x”
means that the field must vanish by symmetry. a = exp(iπσ3/3) and
b = exp(iπσ3/6).

No. τσ τR ε2 PSG gσ gR λ[σa] u1[τμ] u2[τμ] u3[τμ]

1 0 0 + 1 12 12 1,2,3 3 1,3 1,2,3
1a 0 0 + 2 iσ3 12 3 3 3 3
2 0 0 + 6 iσ1 a x 1 1 1
3 0 0 − 4 iσ3 iσ3 3 1 x 3
4 0 0 − 3 12 iσ3 3 x 1 3
5 0 0 − 5 iσ2 iσ3 x 1 2 x
6 0 0 − 7 iσ2 b x 1 2 x

7 1 0 + 6 iσ2 a 3 1,3 1,3 1,3
8 1 0 − 7 iσ1 b 3 0,1 0,2 3
9 1 0 − 6 iσ2 a 3 0 0 1,3
10 1 0 − 5 iσ1 iσ3 3 0,1 0,2 3
10a 1 0 − 2 iσ2 12 3 0 0 3
10b 1 0 − 3 12 iσ2 x 0,3 0 x
10c 1 0 − 4 iσ2 iσ2 x 0 0,3 x
10d 1 0 − 1 12 12 x 0 0 x

Taking into account the sign ε2 and Table II, there are thus
2 × 7 = 14 PSG representation classes for the space group
of the triangular lattice. Note that the choice of time-reversal
representation g� formally doubles the number of PSG classes
to 28 [149]. As discussed previously, the gauge representation
of time reversal does not play a role in the construction of chiral
spin liquids. If, however, we want to impose time reversal on
an ansatz (not in combination with a point-group symmetry),
the choice of g� is sometimes relevant.

C. Invariant ansätze

In the last sections, we presented the algebraic PSG classes
for the triangular lattice. We now introduce the corresponding
ansätze u. As one can see from Eq. (28), the time-reversal
signatures τσ and τR enter at this stage.

We restrict our discussion to first-, second-, and third-
neighbor links of the ansatz. For our choice of symmetry
generators σ and R, it is convenient to impose the constraints
on the links u1, u2, and u3 shown in Fig. 1. For each of these
links, there are two constraint equations, and they are discussed
in Appendix A 2. The solutions to the symmetry constraints
are given in Table III for quantum spin liquids with unbroken
rotation (τR = 0), and in Table IV for staggered flux states
(τR = 1). A priori, the number of ansätze for each of the four
time-reversal signatures (τσ , τR) is the same as the number of
algebraic PSG classes (i.e., seven). However, sometimes the
resulting ansätze are redundant or trivial. In Tables III and IV,
we only list ansätze that allow nonzero parameters on at least
first- or second-neighbor links. Among the chiral states (i.e., at
least one of τσ ,τR �= 0), we further omit the ones that cannot
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TABLE IV. Chiral spin liquids on the triangular lattice with
broken lattice rotation (τR = 1), i.e., staggered flux phases. The
notation is the same as in Table III.

No. τσ τR ε2 PSG gσ gR λ[σa] u1[τμ] u2[τμ] u3[τμ]

11 0 1 + 3 12 iσ2 1,3 0,3 1,3 0,1,3
11a 0 1 + 5 iσ3 iσ1 3 0,3 3 0,3
12 0 1 + 7 iσ1 b x 0,1 1 0,1
12a 0 1 + 1 12 12 x 0 x 0
13 0 1 − 5 iσ3 iσ1 3 1 x 0,3
14 0 1 − 3 12 iσ2 1,3 x 2 0,3
15 0 1 − 2 iσ1 12 x 3 1 0
16 0 1 − 7 iσ2 b x 3 x 0,1
17 0 1 − 6 iσ2 a x 1,3 2 0
17a 0 1 − 1 12 12 x x 3 0

18 1 1 + 4 iσ2 iσ2 1,3 3 0,1,3 1,3
18a 1 1 + 5 iσ1 iσ2 3 3 0,3 3
19 1 1 + 7 iσ2 b x 1 0,1 1
19a 1 1 + 1 12 12 x x 0 x
20 1 1 − 6 iσ1 a x 1 2,3 x

generally break time reversal. However, we include states that
are special cases of others, and we denote them by a, b, etc.,
in column “No.”

As described in Sec. III C, the ansatz on a link given
in Tables III and IV is propagated to the entire lattice by rotation
and translation. In our (Landau) gauge (41), the translation
representation in x direction is uniform, while translation
in y direction may lead to additional signs if ε2 = −1. It is
therefore sufficient to double the unit cell of the lattice in y

direction. The rotation and translation of the mean field to the
doubled unit cell of the triangular lattice is explicitly shown in
Fig. 2, in terms of the allowed u given in the tables. Here, the
corresponding representations of rotation and translation must
be used for the propagation.

Note that the spinon unit cell doubling for ε2 = −1 can
lead to global π -fluxes through holes of the lattice torus when
the linear system size is an odd multiple of two. In this case,
suitable antiperiodic spinon boundary conditions have to be
chosen in order to restore lattice rotation symmetry. These
subtleties do not arise when the linear system size is a multiple
of four [150].

In our gauge, the on-site fields λa are uniform, i.e.,
independent of lattice site. As discussed previously, they
correspond to chemical potential and complex on-site pairing
terms for the spinon. In Tables III and IV, we give the on-site
fields allowed by symmetry. In actual calculations (mean-field

TABLE V. PSG representations of the point group for the kagome
lattice. The notation is the same as in Table II.

No. gσ gR εσ εRσ εR sym

1 12 12 + + + SU(2)
2 iσ3 12 − − + U(1)
3 12 iσ3 + − − U(1)
4 iσ3 iσ3 − + − U(1)
5 iσ2 iσ3 − − − Z2

or projection), they must be adjusted such that the three
constraints 〈Ga〉 = 0 are satisfied (on average or at every site,
respectively). If possible, we simplify the allowed fields ua

using the remaining global gauge symmetry given in Table II
in the column “sym.”

The ansätze for quantum spin liquids on the triangular
lattice up to third neighbors (Tables III and IV) will be analyzed
in more detail elsewhere. In the remainder of this section,
we discuss some general properties and relations with known
phases.

Since τσ = τR = 0, states 1 through 6 in Table III conserve
all lattice symmetries. Among those states, only No. 1 can
break time reversal. All others have coplanar spatial ansatz
components u, so they automatically respect also time reversal,
in accordance with a “PT theorem” (see Secs. III C 3 and
III C 4).

State No. 1 in Table III is the conventional, linear
representation of the space group, allowing uniform real
hopping and s-wave pairing amplitudes. Fixing the global
SU(2) gauge symmetry, we can simplify the first neighbor
to pure hopping, and the second neighbor to hopping and
real pairing. The third-neighbor mean field (or the on-site
field) can then have both hopping and complex pairing, thus
breaking time reversal. Imposing time reversal in the symmet-
ric liquid would limit the third neighbor to real hopping and
pairing.

Restricting No. 1 (or 1a) to first-neighbor hopping results
in a U(1) state with a large circular spinon Fermi surface. This
state is known to yield low variational energies, and a good
description of the ground state of the Heisenberg model with
quite large ring-exchange term [54–56].

The symmetric phase No. 2 in Table III is the so-called
d + id “quadratic-band-touching” (QBT) state which has
recently been found to yield competitive variational energy in
the first-neighbor Heisenberg model with positive, but not too
strong ring-exchange term [57]. It is gapless with quadratic
spinon bands touching at momentum k = 0 in the Brillouin
zone. Note that an additional real hopping leads to the more
familiar, fully gapped chiral topological d + id state, No. 7
in this table [56,57]. Both the U(1) state with a large spinon
Fermi surface discussed above, as well as the QBT state are
strong contenders for the physics realized in organic spin liquid
candidate materials [60].

The QBT state No. 2, as well as No. 6 in Table III
are symmetric QSL ansätze on the triangular lattice that
were missed in two recent preprints [91,92]. As discussed in
Sec. IV B, the triangular-lattice PSG classification in these
preprints is incomplete, as they did not find point group
representations 6 and 7 in Table II.

The symmetric state with a real first-neighbor pairing and
doubling of the spinon unit cell (No. 3 in Table III) was recently
discussed [91,92]. This state (dubbed “π flux”) has a Dirac
spectrum [91], and it was found to yield low variational energy
in the triangular J1-J2 Heisenberg antiferromagnet [92].

We see that some particular states among the ones obtained
through our exhaustive classification have previously been
discussed in the literature. However, a systematic mean-field
or variational investigation of all chiral states on the triangular
lattice is an open problem.
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FIG. 2. First-, second-, and third-neighbor mean fields propagated to the doubled unit cell of the triangular lattice. The sign ε2 = ±1 labels
the translation representation; ũ = (−)τR gRu[gR]† and ū = (gR)2u[(gR)2]† are rotated mean fields, depending on τR ∈ {0,1} and on the gauge
representation gR . The allowed components of u are specified in Tables III and IV for each PSG.

V. KAGOME PSG

Next, we discuss the PSG construction for the kagome
lattice. On the kagome lattice, the same triangular Eqs. (38),
(42), and (43) define the space group. However, the analysis
is slightly more complicated because the unit cell contains
three sites instead of just one. We choose the sublattice indices
{1,2,3} shown in Fig. 3. Equations (38) and (42) do not act
on the sublattice index, but Eqs. (43) do. Fortunately, one
can show (see Appendix B) that there is always a canonical
gauge where the representations gR and gσ are independent
of sublattice site. Therefore the functional form of the space
group representations given in Eqs. (41) and (44) also apply
for the kagome lattice.

Since the algebraic relations among the space group
generators are identical, the kagome lattice naively has the
same PSG classes as the triangular lattice, listed in Table II.
However, a translation-invariant gauge transformation exists
on the kagome lattice that identifies the triangular PSG No. 6

FIG. 3. Symmetry generators and ansatz parameters u for the
kagome lattice.

with No. 2, and No. 7 with No. 5. When gR = exp(iβσ3), the
sublattice gauge transformation

[gs] = [e−iπσ3/3,12,e
iπσ3/3] (45)

changes β �→ β + π/3, but leaves gσ invariant; (s is the
sublattice index in Fig. 3). Therefore, there are only five
point group representations for the kagome lattice, listed in
Table V. Finally, including unit cell doubling ε2, there are in
total 2 × 5 = 10 Z2 PSG classes for the space group of the
kagome lattice [151].

As we discussed in the last section, the complex roots of
unity for the triangular-lattice rotation representation gR in
PSG Nos. 6 and 7 in Table II leads to ansätze with d + id

and p + ip pairing symmetries, respectively. The existence of
the sublattice transformation (45) therefore has an interesting
interpretation: we can say that d + id-wave pairing is gauge
equivalent to s-wave spinon pairing, while p + ip-wave is
gauge equivalent to f -wave spinon pairing on the kagome
lattice.

A. Invariant ansätze

In this section, we present the invariant PSG (ansätze) for
the kagome lattice. The constraint equations are solved for the
links shown in Fig. 3. They are discussed in Appendix B 2,
and the solutions are given in Tables VI and VII. The fields u1,
u2, and u3 are explicitly propagated to the doubled unit cell in
Fig. 4. In this figure, we denote ũa = (−)τRgRua[gR]†, where
gR depends on the particular PSG representation. In contrast
to the triangular lattice, there is only one symmetry constraint
on first- and second-neighbor links of the kagome lattice. For
this reason, there are no trivial or redundant ansätze to omit
in this case. When a state is a special case of another, we
indicate this by a, b, etc., in the column “No.,” as was also
done for the triangular case in Sec. IV.

In Table VI, we list ansätze with unbroken rotation
symmetry (τR = 0). No. 1 through 8 (with τσ = 0) respect
the full lattice space group. In most cases, time reversal is
automatically respected, so they are symmetric liquids [76].
However, similar to the triangular lattice, there are some
states that generally break time reversal, thus violating a “PT
theorem” (see Sec. III C 3). They are Nos. 1 and 6 in this table.
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TABLE VI. Quantum spin liquids on the kagome lattice respect-
ing rotation symmetry (τR = 0). No. 1 to 8 are liquids that do not break
any lattice symmetry (τσ = 0). No. 9 to 13 are Kalmeyer-Laughlin
CSL states that break all reflections (τσ = 1). Column “PSG” refers
to the point group representations in Table V. λ is the on-site field,
and the last three columns specify the ansatz u on links shown in
Fig. 3, in the notation of allowed real components (τμ) = (i12,σa);
“x” means that the field must vanish by symmetry.

No. τσ τR ε2 PSG gσ gR λ[σa] u1[τμ] u2[τμ] u3[τμ]

1 0 0 + 1 12 12 1,2,3 3 1,3 1,2,3
1a 0 0 + 2 iσ3 12 3 3 3 3
2 0 0 + 4 iσ3 iσ3 3 1,3 3 3
3 0 0 + 3 12 iσ3 3 3 1,3 3
4 0 0 + 5 iσ1 iσ2 x 3 1 x
5 0 0 − 1 12 12 1,3 3 1,3 x
6 0 0 − 4 iσ3 iσ3 3 1,3 3 1,2
7 0 0 − 3 12 iσ3 3 3 1,3 x
7a 0 0 − 2 iσ3 12 3 3 3 x
8 0 0 − 5 iσ1 iσ2 x 3 1 3

9 1 0 + 2 iσ2 12 1,3 0,3 0,1,3 1,3
10 1 0 + 5 iσ1 iσ3 3 0,1,3 0,2,3 3
10a 1 0 + 3 12 iσ2 x 0,3 0 x
10b 1 0 + 4 iσ2 iσ2 x 0 0,3 x
10c 1 0 + 1 12 12 x 0 0 x
11 1 0 − 2 iσ2 12 1,3 0,3 0,1,3 0
12 1 0 − 5 iσ1 iσ3 3 0,1,3 0,2,3 0,1
13 1 0 − 3 12 iσ2 x 0,3 0 0,1,3
12a 1 0 − 4 iσ2 iσ2 x 0 0,3 0
12b 1 0 − 1 12 12 x 0 0 0

For τσ = 1, all reflection symmetries of the lattice are broken,
and both small (first neighbor) and large (second neighbor)
triangles can have nontrivial fluxes.

The state resulting from trivial (linear) representation of
the space group, No. 1 in Table VI, has simple uniform
hopping and pairing terms. The first-neighbor U(1) state has
a large Fermi surface. No spin model has been found so far
where this state yields low variational energy [51,152]. The

TABLE VII. Chiral spin liquids on the kagome lattice breaking
rotation symmetry (τR = 1), i.e., staggered flux states. The notation
is the same as in Table VI.

No. τσ τR ε2 PSG gσ gR λ[σa] u1[τμ] u2[τμ] u3[τμ]

15 0 1 + 3 12 iσ2 1,3 0,3 1,2,3 0,1,2
16 0 1 + 5 iσ3 iσ1 3 0,1,3 3 0,3
14 0 1 + 2 iσ3 12 x 0,1 3 0
14a 0 1 + 1 12 12 x 0 3 0
14b 0 1 + 4 iσ3 iσ3 x 0 3 0
18 0 1 − 3 12 iσ2 1,3 0,3 1,2,3 x
19 0 1 − 5 iσ3 iσ1 3 0,1,3 3 1
17 0 1 − 2 iσ3 12 x 0,1 3 1,2
17a 0 1 − 1 12 12 x 0 3 x
17b 0 1 − 4 iσ3 iσ3 x 0 3 x

21 1 1 + 4 iσ2 iσ2 1,3 2,3 0,1,3 1,3
22 1 1 + 5 iσ1 iσ2 3 3 0,2,3 3
20 1 1 + 2 iσ3 12 x 3 0,1 x
20a 1 1 + 1 12 12 x 3 0 x
20b 1 1 + 3 12 iσ3 x 3 0 x
25 1 1 − 4 iσ2 iσ2 1,3 2,3 0,1,3 2
26 1 1 − 5 iσ2 iσ1 3 3 0,1,3 x
24 1 1 − 2 iσ3 12 x 3 0,1 3
23 1 1 − 1 12 12 x 3 0 1,3
23a 1 1 − 3 12 iσ3 x 3 0 3

first-neighbor state No. 7 with a doubled spinon unit cell
(ε2 = −1) is the “Dirac spin liquid” that has been found to
yield excellent ground state energy for the nearest-neighbor
Heisenberg model [45,52,53]. This gapless U(1) state with
Dirac spectrum is a strong candidate for explaining the physics
of the herbertsmithite QSL material [63].

The chiral state No. 13 in Table VI (first neighbor) has
uniform U(1) fluxes θ through elementary triangles, and π −
2θ through hexagons, respectively. This chiral spin liquid was
discussed by Marston and Zheng [153] and by Hastings [154].
It has recently been found provide a good description of the
ground state of the antiferromagnetic J1-J2-Jd Heisenberg in
some parameter range [15,17] (See next section.).

FIG. 4. First-, second-, and diagonal mean fields propagated to the doubled unit cell of the kagome lattice. The sign ε2 = ±1 labels the
translation representation, and ũ = (−)τR gRu[gR]† is the rotated mean field, depending on rotation breaking τR ∈ {0,1} and on the representation
gR . The allowed components of u are given in Tables VI and VII.
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FIG. 5. Hopping parameters ξa on first, second, and diagonal
lattice links as used in the main text. The propagation of these
parameters to the entire lattice is then done using the algebraic PSG.
The exchange interactions J1, J2, and Jd as used in Eq. (46) are also
given.

In Ref. [18], we found the U(1) states dubbed CSL A
and CSL B to yield low variational energies in the J1-J2-Jd

Heisenberg model with a dominant antiferromagnetic Jd

interaction across the diagonals of the hexagon. CSL A and
B are Nos. 12a and 13, respectively, in Table VI. These
chiral states with spinon Fermi surfaces have no U(1) flux
through the hexagons of the lattice, but variable fluxes through
the elementary triangles. CSL A can explain several of the
intriguing physical properties observed in the kapellasite QSL
candidate material [31].

In Table VII, we list staggered flux states, i.e., those with
broken rotation symmetry (τR = 1). The kagome lattice has
six reflection axes: σ and σ ′ = Rσ shown in Fig. 3, and the
ones rotated by R and R2. In the staggered flux states, three out
of these six symmetry axes are broken. For τσ = 0, nontrivial
gauge flux is allowed on small (first neighbor) triangles of the
lattice, while for τσ = 1, nontrivial flux is allowed on large
(second neighbor) triangles.

B. Phase diagram

Recently, the kagome-lattice Heisenberg model with ex-
change interactions on first, second, and diagonal neighbors
across the hexagons has gained attention because of potential
realization of chiral spin liquid ground states [13–20]. Here,
we present a quantum phase diagram for the fully antiferro-
magnetic case, using Gutzwiller projected wave functions for
the subset of classified U(1) CSL states. The phase diagram for
ferromagnetic first- and second-neighbor interactions, relevant
for the kapellasite material, was presented in Ref. [18].

The Heisenberg model we want to study is

H = J1

∑
〈i,j〉

Si · Sj + J2

∑
〈〈i,j〉〉

Si · Sj + Jd

∑
〈i,j〉d

Si · Sj , (46)

FIG. 6. Ternary phase diagrams of the classical J1-J2-Jd Heisen-
berg model on the kagome lattice for all signs of exchange
interactions Jn (except the fully ferromagnetic case). The parameters
are normalized to |J1| + |J2| + |Jd | = 1. The triangle in the center
shows the fully antiferromagnetic case (Jn � 0).

where the exchange interactions Jn on first, second, and
diagonal links are defined in Fig. 5.

In Fig. 6, we show the phase diagram for classical
spins on this lattice, using states with regular magnetic
orders [85]. The seven ternary phase diagrams represent
all combinations of signs for the three exchange couplings
(except the fully ferromagnetic case). The interactions are
normalized to |J1| + |J2| + |Jd | = 1. The central triangle
is the fully antiferromagnetic case with Jn � 0. The top
right triangle has ferromagnetic first- and second-neighbor
interactions, J1,J2 � 0, and a frustrating diagonal interaction
Jd � 0 [18]. The classical phase diagram in Fig. 6 hosts phases
with coplanar spins, dubbed “q = 0,” “

√
3 × √

3,” and the
simple ferromagnet. Furthermore, it exhibits the nonplanar
states “cuboc-1” and “cuboc-2” [13,30,84,85]. These Néel
phases spontaneously break time reversal, and they have
chiral orders S1 · (S2 ∧ S3) = ± 1

3
√

2
on small (first-neighbor)

kagome triangles for cuboc-2, and on large (second-neighbor)
triangles for cuboc-1. These chiral orders break three out
of the six lattice reflection symmetries, as well as the π/3-
lattice rotation R, up to time reversal. With respect to our
classification scheme discussed in Sec. III, the cuboc states
therefore have similar symmetry properties as staggered-flux
CSL states (though, in contrast to CLSs, the cuboc states
also break continuous spin rotation symmetry). At the phase
boundaries of Fig. 6, extensive classical degeneracies generally
arise.

In order to simplify the problem, and to restrict the number
of parameters, we consider only the subset of U(1) QSL states
from the full list of Z2 states given in Tables VI and VII.
In Table VIII, the symmetric U(1) QSL (Nos. 1–6) and the
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TABLE VIII. QSL phases on the kagome lattice with U(1)
gauge structure and unbroken rotation symmetry (τR = 0). The states
with τσ = 0 respect all symmetries, including time reversal, while
τσ = 1 are Kalmeyer-Laughlin chiral spin liquids. ε2 = −1 indicates
doubling of the spinon unit cell. μ is the chemical potential, and
βa = arg(ξa) are the allowed hopping phases on the links shown in
Fig. 4; “x” means ξa = 0.

No. τσ τR ε2 gσ gR μ β1 β2 βd Description

1 0 0 + 12 12 μ 0 0 0 large FS
2 0 0 + iσ2 iσ2 x 0 x x flat band
3 0 0 + 12 iσ2 x x 0 x flat band
4 0 0 − 12 12 μ 0 0 x Dirac [45]
5 0 0 − iσ2 iσ2 x 0 x 0 line FS
6 0 0 − 12 iσ2 x x 0 x flat band

7 1 0 + iσ2 12 μ β1 β2 0 FS
8 1 0 + 12 iσ2 x β1 π/2 x flat band
9 1 0 + iσ2 iσ2 x π/2 β2 x flat band
10 1 0 − iσ2 12 μ β1 β2 π/2 CSL C [153,154]
11 1 0 − 12 iσ2 x β1 π/2 βd CSL B
12 1 0 − iσ2 iσ2 x π/2 β2 π/2 CSL A

Kalmeyer-Laughlin CSL (Nos. 7–12) states are shown. In
Table IX, the staggered flux phases are listed.

We calculate the variational energies of all U(1) QSL states
in the model (46) after Gutzwiller projection on a periodic
3(8)2-site cluster, using the hopping amplitudes and phases
that remain unrestricted by symmetry on first, second, and
diagonal links as variational parameters. We disregard states
that have a flat band at the Fermi energy, since it is not
clear how to construct variational states in this case. In order
to approach the correct limit for purely diagonal hopping
(as |ξ1|,|ξ2| → 0, |ξd | → 1) towards the Shastry-Haldane
resonating-valence-bond (RVB) state of the Heisenberg spin
chain [155,156], we introduce an additional complex phase
π/L for all diagonal hoppings (L is the linear system size), but
otherwise we use periodic spinon boundary conditions. This
guarantees unbroken lattice rotation symmetry in the finite
system.

TABLE IX. Staggered flux U(1) CSL phases (τR = 1) on the
kagome lattice. Notations are the same as in Table VIII.

No. τσ τR ε2 gσ gR μ β1 β2 βd Description

9 0 1 + 12 iσ2 μ β1 0 βd FS
10 0 1 + iσ2 12 x β1 x π/2 line FS
11 0 1 + 12 12 x π/2 0 π/2 line FS
12 0 1 − 12 iσ2 μ β1 0 x FS/Dirac
13 0 1 − iσ2 12 x β1 x 0 FS/Dirac
14 0 1 − 12 12 x π/2 0 x line FS

15 1 1 + iσ2 iσ2 μ 0 β2 0 FS
16 1 1 + iσ2 12 x x β2 x line FS
17 1 1 + 12 12 x 0 π/2 x line FS
18 1 1 − iσ2 iσ2 μ 0 β2 x FS/Dirac
19 1 1 − iσ2 12 x x β2 x line FS
20 1 1 − 12 12 x 0 π/2 0 FS/Dirac

Dirac QSL

CSL C
CSL B

AF chain

CSL A

cuboc-2cu
bo

c-
1

cuboc-2

FIG. 7. Variational phase diagram for the quantum J1-J2-Jd

Heisenberg model on the kagome lattice for the fully antiferromag-
netic case. The parameters are normalized to |J1| + |J2| + |Jd | = 1.
Black symbols are associated with robust Néel long-range orders.
The left inset shows the classical analog.

In addition to the spin liquid wave functions, we compute
the energies of correlated Néel states for regular magnetic
orders that appear in the classical phase diagram Fig. 6. We
incorporate quantum fluctuations in these product states via
the Huse-Else construction, i.e., using spin Jastrow factors
[18,95,157]. The microscopic variational energies are then
compared, and the resulting quantum phase diagram is
presented in Fig. 7. In the following, we discuss the content of
our phase diagram.

We should note that our variational investigation is re-
stricted by a relatively small linear system size L = 8, and
energy accuracies of about 10−3. It is plausible that the
energy differences between competing phases can sometimes
be smaller than these error bars, especially close to phase
boundaries. In a related study, Ref. [15] reported finite size ef-
fects that may require even larger systems. Therefore although
our quantum phase diagram is very rich and interesting, there
is certainly room for improvement.

The Néel phases q = 0 and cuboc-2 survive in the quantum
phase diagram Fig. 7, while we find that the cuboc-1
phase disappears upon inclusion of quantum fluctuations.
Several U(1) quantum spin liquids become lowest energy
states.

The left corner of the ternary phase diagram in Fig. 7 is the
antiferromagnetic first-neighbor kagome Heisenberg model.
Within the considered states and system size, we do not find
an instability of the gapless Dirac state [45] towards one of our
classified chiral U(1) phases. A consensus has been reached in
the community that the ground state of the pure first-neighbor
model is a spin liquid with unbroken spin rotation and
translation symmetries. However, the nature of the QSL state
is still under debate. In particular, the question whether it has
gapless or gapfull spin excitations remains unsettled. While
exact diagonalization is not fully conclusive due to small
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system sizes [158], density-matrix renormalization group
(DMRG) computations suggest a symmetric Z2 liquid with
a sizable spin gap [46–48]. On the other hand, large-scale
variational improvements of the Dirac state using Lanczos
steps found no evidence for such a gap, and a striking robust-
ness of this state 51–53]. Functional renormalization group
calculations indicated exponential decay in spin correlations,
giving thus support for a gapped liquid [58]. The promising
coupled-cluster method has so far been inconclusive on this
question [159]. On the experimental side, herbertsmithite is
believed to be described by a kagome Heisenberg model
with a dominant first-neighbor exchange interaction. The
majority of experiments seem to give strong evidence for a
gapless QSL state in this material [65]. However, recent NMR
measurements indicated, for the first time, the presence of a
spin gap [160]. In conclusion, more work is certainly necessary
to reconciliate these results on the first-neighbor kagome
Heisenberg model, both on theoretical and experimental
fronts.

In our phase diagram, Fig. 7, as the diagonal interaction
Jd is increased, the U(1) Dirac spin liquid becomes unstable
to spontaneous breaking of time reversal. This happens via
threading of U(1) flux π − 2θ through the hexagon and θ

through the small lattice triangles, thus breaking all reflection
symmetries and giving a mass to the Dirac fermions. It
corresponds to state No. 10 in Table VIII that we dub
“CSL C.” A small complex second-neighbor hopping, and
an even smaller (purely imaginary) diagonal hopping allowed
by symmetry slightly lower the variational energy. Recently,
CSL C has independently been found and characterized by
DMRG and also by parton methods [14–17]. In agreement
with Ref. [15], we find that the instability of the Dirac state
towards CSL C seems to require Jd > J2.

The pure J2 model at the right corner of the phase diagram
in Fig. 7 is three uncoupled kagome lattices, so the Dirac QSL
state is again the lowest-energy state. The q = 0 Néel order
is stabilized in the intermediate region of J1-J2, in agreement
with previous studies [16,53,58].

As Jd is increased beyond ∼1/3 [i.e., Jd � (J1 + J2)/2],
the optimized spinon hopping across the diagonal becomes
stronger. The variational state then acquires a quasi-one-
dimensional (1D) character with a gapless spinon spectrum.
In the limit of pure Jd at the top corner of Fig. 7, the model
(46) decouples into arrays of antiferromagnetic Heisenberg
chains in three spatial directions. Coupling these chains by
J1 � J2, the 1D character remains surprisingly robust, as
shown by the green dots in the phase diagram. A similar
effect was observed in the case of ferromagnetic first- and
second-neighbor couplings [18].

For Jd � 1/3 and J1 > J2 or J1 < J2, we find that the chiral
spin liquids Nos. 11 and 12 in Table VIII (CSL B and CSL
A, respectively) are the lowest-energy states within the set
of wave functions we considered. They have gapless spinon
Fermi surfaces due to a strong diagonal hopping. Note that
the rotation representation gR is nontrivial in these states. The
resulting staggering under rotation of the complex hopping
phases on first- and second-neighbor links implies that the
time-reversal breaking U(1) flux is introduced through the
triangles of the lattice, while the hexagons maintain a trivial
flux. (See Sec. V A.)

Note that all QSL phases we find in Fig. 7 have unbroken
lattice rotation (τR = 0), so they are either fully symmetric
(Dirac) or Kalmeyer-Laughlin type (CSL A, B, and C). This
is in contrast to the Néel state cuboc-2 (and cuboc-1), where
rotation symmetry is spontaneously broken. The only region
where we find staggered-flux CSL states to be relatively low in
energy is close to the 1D phase boundary in Fig. 7. Similarly,
below the cuboc-2 phase, close to the line J1 = 0, a Kalmeyer-
Laughlin CSL appears to be low in energy. However, our
limited precision and computational resources do not allow
us to make stronger statements. More detailed investigations
of U(1) QSL states, using higher accuracy, better minimization
procedures, and larger system sizes would be interesting.
Promising would also be a variational or mean-field study
using the Z2 CSL states classified in Tables VI and VII, a task
which we leave for future work.

C. Spin structure factors

Neutron spectroscopy is a powerful tool to probe
conventional and exotic phases in quantum magnets
[31,34,63,66,161]. In this experiment, static and dynamical
spin structure factors can be measured, which provides
valuable information on the nature of the phase. The structure
factor is given by

S(q) = N−1
∑
i,j

e−iq·(r i−rj )〈Si · Sj 〉, (47)

where the sums go over all N sites of the lattice. In Néel states
with broken spin rotation symmetry, it exhibits strong inten-
sities at the ordering wave vectors and soft goldstone modes
[85]. In quantum spin liquid phases, the structure factor is
expected to be much broader, or even incoherent. In Ref. [18],
we calculated the static structure factors for the CSL A and
CSL B phases of Fig. 7. The quasi-one-dimensional character
of these phases leads to lines of intensity, reminiscent of the
uncoupled spin chains. However, important two-dimensional
correlations still provide distinct features that have measurable
consequences.

In Fig. 8, we present the static structure factors for the
quantum spin liquid phases discussed in the last section.
For comparison, we also include the symmetric state with a
large Fermi surface (FS) in Fig. 8(a); (first-neighbor hopping,
No. 1 in Table VIII). Figure 8(b) shows the structure factor
of the Dirac QSL in the first-neighbor Heisenberg model,
and Fig. 8(c) is the new CSL C state at the point J �
(0.63,0.13,0.24), where the hoppings are |ξ | � (0.75,0.25,0)
and complex phases β � (0.08π, − 0.61π,π/2); see also
Ref. [162] for an accurate determination of the optimal
variational parameters. We display the structure factor in
the first and extended Brillouin zones (white resp. black
hexagons in Fig. 8). The numerical Gutzwiller projection is
done on a 3(12)2 site cluster. For smaller systems, the structure
factor of the Dirac spin liquid has also been discussed in
Refs. [45,52,163].

By inspection of Fig. 8, the Fermi surface QSL state
has broad intensity maxima at the K points of the extended
Brillouin zone. In the Dirac state, the maxima are shifted to
the M points. Finally, the intensity is even broader in the CSL
C state, with very wide maxima at K points. In this case, the
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(a) (b) (c)

FIG. 8. Static spin structure factor NS(q), Eq. (47), in the phases (a) FS QSL, (b) Dirac QSL, and (c) CSL C. Gutzwiller projection is done
on a cluster of N = 3(12)2 sites, normalization is

∑
q S(q) = 1.

maximum may be characterized as a “ring” on the boundary of
the extended Brillouin zone. Note that the Dirac QSL structure
factor is in good agreement with exact diagonalization results
on the first-neighbor Kagome model for N = 36 sites [164].
On the other hand, the structure factor of this model obtained
by DMRG seems to show more of a “ring” structure [47],
similar to CSL C.

The static structure factor can be used to evidence these
phases in neutron scattering experiments. However, more
detailed information is provided by the dynamical spin
structure factor. At low energy, it gives information about the
excitation gap from the singlet ground state to spin S = 1
(triplet) excitations. Here, the CSL C phase is fully gapped
while the other states displayed in Fig. 8 are expected to
be gapless. Furthermore, for gapless spinons, unique features
due to the shape of the spinon Fermi surface are expected to
show up in the structure factor at low energy. However, these
effects are difficult to calculate beyond the quadratic theory
for interacting spinons. Progress can be made by Gutzwiller
projection of excitations [66,116,163], or by perturbative
treatments of interaction [165–168].

D. Bulk spectra

The symmetry group SG and its projective representations
can impose constraints on the spinon spectrum of an invariant
ansatz. Most importantly, it is sometimes possible to say, for
a given PSG representation class, if the spectrum at certain
points in the Brillouin zone (BZ) is gapless, and which terms
can potentially lead to a gap.

Here, we discuss the case of the kagome lattice, but the ideas
apply in a similar way to the triangular and other lattices. One
ingredient we use is that the PSG representations of the point
group and the translation group factorize, Eq. (44), as is the
case for the considered lattices. For symmorphic space groups,
we expect this generally to be the case.

First, we want to investigate the effect of projective
symmetry transformations on the ansatz in Fourier space.
For ε2 = 1, the unit cell is simply the primitive cell
of the lattice, while for ε2 = −1 it needs to be in-
creased to accommodate the rotation representation, see
Eq. (44). We use translational symmetry in the uniform

gauge and Fourier transform, unm(k) = ∑
i,j u(Ri + rn,Rj +

rm) exp{ik · (Ri − Rj + rn − rm)}, where k is in the reduced
BZ, and rn labels sites in the unit cell. unm(k) are 2 × 2
matrices that can be decomposed into unm = u

μ
nmτμ with

(τμ) = (i12,σa). Similar to the discussion in Sec. III A and
Eq. (24), the projective representation acts in Fourier space as

Qx(u) = [(−)τx gx(k)u(x−1k)gx(k)†]. (48)

The unitary gx(k) acts separately on spin and space indices,
and we have

gx(k) = Gx(k) ⊗ gx, (49)

where gx is a constant SU(2) matrix, and Gx(k) is a N × N

unitary. The transformation Gx(k) takes into account permu-
tations of sublattice sites and translations that may accompany
the symmetry x.

In Fourier space, the spinon Hamiltonian reduces to block
diagonal form given by

(Hnm)k = unm(k) + [umn(k)]†. (50)

For a unit cell of N sites, the Hk is therefore a 2N × 2N

matrix. It may further be decomposed as Hk = H
μ

k σμ with
(σμ) = (12,σa), and H

μ

k are matrices of size N × N .
From spin rotation symmetry and the discussion in Sec. II C,

it follows that the ansatz satisfies

unm(−k) = [unm(k)]†, (51)

or u0
nm(−k) = −u0

nm(k), ua
nm(−k) = ua

nm(k). In terms of the
Hamiltonian components, we therefore have H 0

−k = −H 0
k and

Ha
−k = Ha

k .
Special “high-symmetry” points in the reduced BZ can give

constraints on the spinon spectrum, or one can make statements
about level degeneracies. If a symmetry x leaves a point k in the
Brillouin zone invariant (modulo backfolding by a reciprocal
vector), i.e., x(k) = k mod G, then the spinon Hamiltonian
satisfies

Hk = (−)τx gx(k)Hkgx(k)†. (52)

Furthermore, when x(k) = −k mod G, using the property
(51), gives a similar constraint on Hk.

In the case of the kagome lattice, the matrices gx in
Eq. (52) are particularly simple and satisfy (gx)2 = ±12. The
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(a) (b) (c)

FIG. 9. Lines and points of gapless Fermi surfaces (green dots
online) in the U(1) states No. 11 [(a)], No. 17 [(b)] in Table IX, and
Z2 state No. 8 [(c)] in Table VI. Black hexagons are first BZs, the
rectangle in (c) is the reduced BZ.

components H
μ

k in Eq. (52) are therefore uncoupled, and the
conjugation by gx = σμ can only give additional signs for Ha

k
with a �= μ. Equation (52) then reduces to

H
μ

k = (−)τ
μ
x Gx(k)Hμ

k Gx(k)† (53)

for every N × N block H
μ

k , μ = 0,1,2,3. If the sign (−)τ
μ
x

is positive, then Eq. (53) can give information about level
degeneracies. In the following, we consider the case when the
sign is negative. In this case, and when the number of sites N in
the unit cell is odd, we can immediately conclude from Eq. (53)
that H

μ

k must have at least one zero eigenvalue, irrespective
of the matrix Gx(k). As a first example, let us discuss the
inversion symmetry R3, which brings k �→ −k for all wave
vectors. Combined with the property (51), this implies the flat
bands at zero energy observed in the U(1) state Nos. 2, 3, 8,
and 9 in Table VIII.

In general, lattice reflections leave straight lines in the
Brillouin zone (BZ) invariant. Let us consider the case of
simple unit cell with ε2 = 1. On the one hand, reflection σ

and its rotations by R and R2 (see Fig. 3) conserve the lines
connecting the Brillouin zone center � with the corners K .
On the other hand, the reflection Rσ and its rotations leave
the lines �-M invariant. Combined with k �→ −k inversion,
they also leave the zone boundaries K-K invariant. These
symmetry considerations explain the lines of Fermi surfaces
in the staggered-flux U(1) states 10, 11, 16, and 17 in Table IX.
In Fig. 9, we give some examples of such symmetry-protected
Fermi surface lines.

The symmetry analysis is more complicated in the case
of ε2 = −1, where the cell contains an even number of sites.
The matrix representation G(k) of the symmetry is now even
dimensional. For a negative sign in (53), the presence of zero
eigenvalues of Hk can still be inferred from the form of G(k):
if some of its eigenvalues do not come in pairs ±λ, then Hk

has zero eigenvalues. The lines of Fermi surfaces for the cases
with ε2 = −1 in Tables VIII and IX can be understood from
such an analysis of reflection symmetries [169].

VI. DISCUSSION & OUTLOOK

In Sec. II, we present a general discussion of fermionic
spinon fractionalization in quantum spin liquids. This frac-
tionalization entails an emergent local SU(2) gauge symmetry
in the enlarges spinon Hilbert space, and we discuss the
construction of gauge invariant characterizations and spin
order parameters. In Sec. III, we review how the emergent
symmetry gives rise to classes of nontrivial representations of

lattice symmetries in the gauge group, and how this leads to
the projective symmetry group classification of quantum spin
liquid phases. We systematically extend this classification to
the case of chiral, i.e., time-reversal broken singlet quantum
spin liquids. In particular, we distinguish between Kalmeyer-
Laughlin and staggered-flux CSLs: the first conserving lattice
rotations, the latter breaking them. In Secs. IV and V, we apply
this general formalism to the case of triangular and kagome
lattices, and we exhaustively list all projective symmetry
representations, and the corresponding symmetric and chiral
spin liquid ansätze for these lattices. Finally, in Sec. V, we
investigate the subset of U(1) QSL phases variationally for
the J1-J2-Jd Heisenberg model on the kagome lattice, and we
discuss spin structure factors and symmetry constraints on the
spinon spectrum in some of these phases.

In view of the recent renewal of interest in chiral spin
liquids, the PSG classification can give valuable information
on exotic states, fractional symmetry representation classes,
and flux patterns that can potentially arise. Emergence of
such phases is primarily expected in ground states of spin
models on two- and three-dimensional lattices with strong
geometric frustration. Interestingly and encouragingly, the
number possible Z2 and U(1) QSL phases for triangular-based
lattices (kagome, honeycomb, etc.) is limited and generally
strongly reduced with respect to the square lattice, where
this number is very large [70]. It will be interesting to
further investigate the phases classified in this paper by self-
consistent or variational methods for microscopic spin models.
Application of the general classification scheme presented in
this paper to other lattices, or fractionalization of higher values
of spin are further promising directions.
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APPENDIX A: TRIANGULAR PSG

1. Algebraic PSG

Following the discussion in Sec. IV B, it remains to derive
the expressions (44) for the gauge representations of the
point group (Z2 PSG) of the triangular lattice. Let us first
consider the reflection symmetry σ ; (see definition in Fig. 1).
Using the translation representation (44), the algebraic relation
(42a) imposes the following constraint on the representation
gσ (x,y):

gσ (x,y) = (εσ2)(ε2)xgσ (x,y − 1), (A1)

with εσ2 = ±1. This equation is solved by

gσ (x,y) = (εσ2)y(ε2)xygσ (x). (A2)
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Furthermore, reflection has the property Eq. (43a), i.e., σ 2 = e.
Using Eq. (A2), this imposes the constraint

(ε2)xy(εσ2)ygσ (x)(ε2)xy(εσ2)xgσ (y) = ±12. (A3)

This implies that gσ (x) = (εσ2)x+y(ε2)xygσ , where gσ is a
constant matrix, and (gσ )2 = ±12. Keeping in mind that the
staggered gauge transformations g(x,y) = (−)x and g(x,y) =
(−)y leave the uniform gauges gx̂ and gŷ , Eq. (44) invariant,
we can use them to eliminate the sign εσ2. The final result is

gσ (x,y) = (ε2)xygσ , (A4)

as announced in Eq. (44a).
Next, we consider the rotation generator R. We start with the

algebraic relations (42b) and (42c) involving the translations.
Equation (42b) imposes the constraint (ε2)ygR(x − 1,y) =
(εR1)gR(x,y) on the rotation representation. It is solved
by

gR(x,y) = (ε2)xy(εR1)xgR(y). (A5)

Note that this constraint and its solution is also valid on
the square lattice [70]. In contrast, the relation (42c) only
applies to triangular-based lattices. It imposes the constraint
(ε2)xgR(x,y − 1) = (εR2)gR(x,y)(ε2)y , implying

gR(x,y) = (εR2)y(ε2)xy+y(y+1)/2gR(x). (A6)

Combining (A5) and (A6), we find

gR(x,y) = (εR1)x(εR2)y(ε2)xy+y(y+1)/2gR, (A7)

where gR is a translation-invariant SU(2) matrix. The previous
gauge choices still allow transformations of the form g(x,y) =
(−)x+y , which can be used to eliminate the sign εR2 from
Eq. (A7).

Using the group multiplication law (25), we obtain the
following representation of the reflection Rσ from Eqs. (A4)
and (A7),

gRσ (x,y) = (εR1)x(ε2)y(y−1)/2gRgσ . (A8)

The constraint Eq. (43b), (Rσ )2 = e, now forces εR1 = 1 and
(gRgσ )2 = ±12.

Finally, we have to enforce the constraint (43c), R6 = e.
One can check that the remaining sign ε2 in Eq. (A7) goes
through this equation, and the constant matrix gR must satisfy
(gR)6 = ±12.

It remains to solve the equations for the constant (translation
invariant) matrices,

(gσ )2 = (εσ )12, (A9a)

(gRgσ )2 = (εRσ )12, (A9b)

(gR)6 = (εR)12. (A9c)

Since the signs ε(·) in (A9) provide gauge invariant character-
isation of Z2 PSG representations, we may naively expect
that they are sufficient for enumeration, and that we have
23 = 8 representation classes. However, this expectation is
incorrect for two reasons. First, one can easily see that not all
combinations of signs lead to solutions in (A9). For example,
εσ = εRσ = 1 implies gσ = gR = 12, and we must necessarily
have εR = 1. It has been argued (see, e.g., Ref. [92]) that this
fact is a shortcoming of the particular spin fractionalization

scheme. While this point of view has some validity and
may lead to interesting developments, we will not further
pursue it here. Instead, we show that these signs are actually
not sufficient to entirely characterize Z2 PSG classes on the
triangular lattice.

The cases εσ = 1 or εRσ = 1 are relatively simple, as
they immediately lead to the solutions gσ = 12 or gRgσ = 12,
respectively. In turn, Eq. (A9c) does not give any additional
constraint, leading to the solutions 1, 3, and 4 in Table II.

The case εσ = εRσ = −1 is most interesting, as it gives
rise to more complicated solutions. We can always choose
a global gauge such that gσ = iσ2, solving Eq. (A9a). The
general solution to (A9b) is then gRgσ = eiβσ3 iσ2, where β

is a real parameter. Finally, plugging gR = eiβσ3 into (A9c),
we obtain β = 0,π/6,π/3, π/2, i.e., Nos. 2, 7, 6, and 5 in
Table II.

Note that the solutions β = 0 and π/3 and β = π/6 and
π/2 imply the same sign in Eq. (A9c), εR = +1 and εR = −1,
respectively. That is, these phases cannot be distinguished by
the space group fractionalization signs of the Z2 spin liquid.
Since a pairing � in the corresponding ansatz transforms as
� �→ �e2iβ under π/3 lattice rotation, these representations
potentially lead to s-, p + ip-, d + id-, and f -wave spinon
pairing symmetries on the triangular lattice [56,57]. As it was
first recognized in Ref. [57], in the absence of a hopping, the
pure d + id-wave paring state indeed represents a symmetric
Z2 QSL phase that respects time reversal. For such pure pairing
states, the SU(2) gauge flux through diamond plaquettes of
the lattice is given by TrP = cos 4β, so we have TrP =
{1, − 1/2, − 1/2,1}, respectively, for these representations
gR . We see that, even though the Z2 signs ε(·) are identical
(e.g., for pure s-wave and in the d + id QBT state [57]), the
respective SU(2) fluxes differ, implying that they constitute
distinct symmetric QSL phases.

Finally, we should mention that the “complex” solutions
for the rotation representation, β = π/6 and π/3 above, were
missed in recent PSG classification attempts [91,92]. Similarly,
this type of solutions seem to have been omitted in the original
classification of symmetric QSLs on the square lattice [70].
However, as we have shown here, these solutions are relevant
and they can lead to distinct phases, even when we are only
interested in the case of fully time-reversal symmetric quantum
spin liquids.

2. Invariant PSG

Here, we discuss the symmetry constraints on the ansatz
for the triangular lattice. The field on links u1, u2, and u3 are
defined in Fig. 1. The solutions to the symmetry constraints for
the different PSG representations (Table II) and time-reversal
signatures τσ ,τR are given in Tables III and IV of the main
text.

The on-site field λ must respect both generators of the point
group, so we have

λ = (−)τσ gσλ[gσ ]†, (A10a)

λ = (−)τRgRλ[gR]†. (A10b)

The first-neighbor link u1 has the symmetry σ keeping both
sites fixed, and Tx̂TŷR

3σ exchanging sites. The corresponding
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constraint equations are

u1 = (ε2)(−)τσ gσu1[gσ ]†, (A11a)

[u1]† = (ε2)(−)τR (gR)3u1[(gR)3]†. (A11b)

For the second-neighbor link u2, it is easiest to impose the
symmetries σ and Tx̂TŷR

3σ , both exchanging sites:

[u2]† = (−)τσ gσu2[gσ ]†, (A12a)

[u2]† = (ε2)(−)τR (gR)3u2[(gR)3]†. (A12b)

Finally, the third-neighbor link has the symmetry σ keeping
both sites fixed, and R3 exchanging them, so

u3 = (−)τσ gσu3[gσ ]†, (A13a)

[u3]† = (−)τR (gR)3u3[(gR)3]†. (A13b)

As we see, first-, second-, and third-neighbor links respect two
reflection symmetries of the triangular lattice, so they have the
maximal number of two constraints in this case.

APPENDIX B: KAGOME PSG

1. Algebraic PSG

As we discussed in the main part of the text, the algebraic
relations among symmetry generators of the space group are
formally identical for kagome and triangular lattices. The
relations (38) and (42) act independently on each of the
three sublattice sites. We can therefore solve these constraints
in exactly the same way as on the triangular lattice, for
each sublattice site independently. The result is Eqs. (A2)
and (A7), where the signs ε2 and εR1, and especially the
translation-invariant matrices gsσ and gsR are now sublattice
dependent.

Next, we consider the point group relations (43). For the
kagome lattice, these relations now couple the three sublattice
sites. Equation (43c), R6 = e, forces the translation signs ε2

to be the same on each sublattice. Again, Eq. (43a), (Rσ )2 =
e implies εR1 = +1. Finally, the translation-invariant point
group representations must satisfy the equations

g1σ g3σ = (g2σ )2

= g3σ g1σ = (εσ )12, (B1a)

(g1Rg3σ )2 = g2Rg1σ g3Rg2σ

= g3Rg2σ g2Rg1σ = (εRσ )12, (B1b)

(g1Rg3Rg2R)2 = (g2Rg1Rg3R)2

= (g3Rg2Rg1R)2 = (εR)12, (B1c)

where s in gsσ and gsR is the sublattice index shown in Fig. 3.
Before solving Eq. (B1), it is convenient to show that there is

a canonical gauge where the rotation representations gsR do not
depend on the sublattice site s. Under a global sublattice gauge
transformation g = [g1,g2,g3], the point group representations

of the kagome lattice transform as

g1σ �→ g1g1σ g
†
3, (B2a)

g2σ �→ g2g2σ g
†
2, (B2b)

g3σ �→ g3g3σ g
†
1, (B2c)

and

g1R �→ g1g1Rg
†
3, (B3a)

g2R �→ g2g2Rg
†
1, (B3b)

g3R �→ g3g3Rg
†
2. (B3c)

Let us start in an arbitrary gauge where all gsR differ,
and let us define gR as a root of the equation (gR)3 =
g3Rg2Rg1R . Then, by virtue of Eq. (B3), performing the change
of gauge g = [g†

Rg3Rg2R,g3R,gR] makes (g1R,g2R,g3R) �→
(gR,gR,gR), which completes the proof.

Next, we consider the solutions to Eq. (B1), and we show
that gsσ must also be sublattice independent in that case.
Let us first discuss (B1c), which is simply (gR)6 = εR in the
canonical gauge. We again have four solutions, gR = enπiσa/6,
n = 0 . . . 3, depending on the sign εR . However, as discussed
in Sec. V of the main text, the sublattice gauge transformation
(45) identifies them pairwise, and it is sufficient to consider
the two solutions with (gR)2 = εR .

The quadratic Eq. (B1a) is formally solved by g2σ = √
εσ ,

and Eq. (B1b) by g3σ = g
†
R

√
εRσ . Combining the nonquadratic

parts of these equations, and using (gR)2 = εR , one derives the
relation gR

√
εσ = √

εRσ . Replacing these results back into gσ ,
we obtain gσ = (εσ

√
εRσ

†
gR,

√
εσ ,g

†
R

√
εRσ ) = √

εσ (1,1,1).
QED.

Once we have shown that both gsR and gsσ are sublattice
independent in the canonical gauge, it is immediately clear
that the solutions for the PSG classes are the same as for the
triangular lattice, since Eq. (B1) reduce to Eq. (A9). Omitting
the gauge equivalent solutions as discussed in Sec. V, the final
result in Table V is then readily obtained as before.

2. Invariant PSG

Here, we consider an ansatz on the kagome lattice with first
neighbor u1, second neighbor u2, and diagonal neighbor u3

across the hexagons. For our choice of symmetry generators,
it is convenient to impose the symmetry constraints on the
links shown in Fig. 3. The solution to the constraints are given
in Tables VI and VII of the main text.

For the on-site field, we choose to impose the constraints
at sublattice site s = 2,λ = λ2. The symmetries leaving this
site invariant are reflection σ and rotation R3 (up to irrelevant
translations). The corresponding constraint equations are

λ = (−)τσ gσλ[gσ ]†, (B4a)

λ = (−)τRgRλ[gR]†. (B4b)
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Here, we have used the fact that (gR)2 = ±1 for the kagome
lattice.

Next, consider the mean field u1 on the first-neighbor link.
This link only has the reflection symmetry σR, exchanging
sublattice sites 1 and 2. Therefore the constraint on the first-
neighbor field u1 is

[u1]† = (−)τσ +τR (gσgR)u1[gσgR]†. (B5)

The second-neighbor link in Fig. 3 has the symmetry σ

exchanging sublattice sites 1 and 3. Therefore, the constraint
on the ansatz is

[u2]† = (−)τσ gσu2[gσ ]†. (B6)

Finally, the diagonal link across the hexagon has reflection
symmetry σ , and R3 exchanging sites. The symmetry con-
straints on u3 are therefore

u3 = (ε2)(−)τσ gσu3[gσ ]†, (B7a)

[u3]† = (ε2)(−)τRgRu3[gR]†. (B7b)

Note that Eq. (B4b) can be used to propagate the on-site
field λ to the other sublattice sites. Furthermore, the translation
representations (41) do not affect the on-site field. Therefore,
λ is uniform in the chosen gauge. Similar to the on-site field
in (B4b), Eq. (B7b) can be used to propagate u3 by rotation.

We solve Eqs. (B4) through (B7) for each of the 10
PSG representations and time-reversal signatures τσ , τR .
The solutions for u can be further simplified by choosing
appropriate global gauges. Propagating the fields to the lattice
as shown in Fig. 4, it turns out that some of the resulting ansätze
u are merely special (limiting) cases of others. This may be due
to the limited range of mean fields we are taking into account.
Here we are only concerned with ansätze u that are distinct
(i.e., gauge inequivalent) on the first three neighbors.

APPENDIX C: U(1) FLUX OPERATOR

To better understand the relation of the SU(2) gauge flux
operator discussed in Sec. II E of the main text with the U(1)
flux introduced in Ref. [2], let us start by discussing this
approach. In the U(1) formalism, we only consider the U(1)
subgroup of the local SU(2) symmetry,

fα �→ eiϕfα, (C1)

and we disregard the particle-hole symmetry. A gauge and
spin-rotation invariant loop operator is

P̂ = χ12χ23 . . . χq1, (C2)

where χij = f †
i fj are singlet spinon hopping operators. Pair-

ing terms ηij = f T
i ε fj are not considered in this formalism.

In terms of the spinon operators, we have

P̂ = −Tr[(1 − B1)B2 . . . Bq] , (C3)

where Bj are the matrices

(Bαβ) = f f † = (fαf
†
β ) (C4)

and the trace is over spin indices. Using the spin representation
(1), one finds that

B =
(

1 − n

2

)
12 − Saσa. (C5)

Let us define S = Saσa . Enforcing the constraint on every site
of the loop (nj = 1), we find

P̂ = Tr
[(

1
2 + S1

)(
1
2 − S2

)
. . .

(
1
2 − Sq

)]
. (C6)

Using εSε = Sa(εσaε) = Saσ ∗
a = S, we have

P̂ = Tr
[(

1
2 − S1

)(
1
2 + S2

)
. . .

(
1
2 + Sq

)]
. (C7)

In fact, without normal ordering, the U(1) flux, Eq. (C7), is
the same expression as the trace of the SU(2) flux Eq. (21),
and it depends on the base site of the loop. Note, however, that
we have used the constraint on every site to get the U(1) flux
(C7), while this is not necessary for calculating the trace of the
SU(2) flux operator.

Similar to our discussion in Sec. II E, we must be concerned
that the U(1) flux operator (C7) depends on the base site of
the loop. This is inconsistent with the mean-field flux, ξ

U(1)
C =

ξ12 . . . ξq1, which is independent of base site. To fix this, we
need to normal order the flux operator. Normal ordering has
a different effect on the U(1) flux as it has on the SU(2) flux,
because the particle number nj appears on every site in the first
case, while it is absent in the latter case. Finally, the normal
ordered U(1) flux operator turns out as

:P̂ : = −Tr
[(

S1 − 1
2

)(
S2 − 1

2

)
. . .

(
Sq − 1

2

)]
. (C8)

In terms of classical spins, this expression can be an arbitrary
complex number, while the trace of the normal-ordered SU(2)
flux, Eq. (23), is purely real or imaginary. These results are
entirely consistent with the respective mean-field fluxes.

Note that, up to a sign, the normal-ordered U(1) flux for
fermions is also given by the cyclic spin permutation operator
P123...q = P12P23 . . . Pq1, Pij = 2Si · Sj + 1/2. We have

:P̂ : = (−)q−1P123...q . (C9)

The same expression holds for the U(1) flux of bosonic
spinons, but without the additional sign.

Comparing the expressions Eq. (23) for the SU(2), and
Eq. (C8) for the U(1) flux operator, we see that they are
identical for classical spins when S � 1. For q = 3, the
imaginary part of the U(1) flux coincides with the SU(2) flux
(= scalar chirality operator), but in general these expressions
are different.
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